The official implementation of ReaSon.
- [2025.11.13] We realse codes of inference demo.
- [2025.11.08] ππ Our paper "ReaSon: Reinforced Causal Search with Information Bottleneck for Video Understanding" has been accepted to AAAI 2026!
- π Release the paper (arXiv preprint & project page)
- π» Release full codes, including training and inference
- π Release pretrained ReaSon policy
π§ Environment Setup
We provide a one-click installation script:
bash install.shOr install manually:
conda create -n reason python=3.9 -y
conda activate reason
git clone https://github.com/robin-hlt/AAAI26-ReaSon.git
# Install LLaVA-Video (optional)
git clone https://github.com/LLaVA-VL/LLaVA-NeXT
cd LLaVA-NeXT && pip install -e . && cd ..
# Install YOLO-World
git clone --recursive https://github.com/AILab-CVC/YOLO-World.git
cd YOLO-World && pip install -e . && cd ..
# Install ReaSon dependencies
pip install -r requirements_basic.txt
pip install "flash-attn==2.6.3" --no-build-isolation
# Fix mmdet/mmyolo related issues
sed -i "s/mmcv_maximum_version = '2.1.0'/mmcv_maximum_version = '2.3.0'/g" $(python -c "import importlib.util; filename=importlib.util.find_spec('mmdet').origin;print(filename)")
sed -i "s/mmcv_maximum_version = '2.1.0'/mmcv_maximum_version = '2.3.0'/g" $(python -c "import importlib.util; filename=importlib.util.find_spec('mmyolo').origin;print(filename)")
# pip install --upgrade setuptools
# Download model
mkdir pretrained && cd pretrained
mkdir YOLO-World && cd YOLO-World
wget https://huggingface.co/wondervictor/YOLO-World/resolve/main/yolo_world_v2_xl_obj365v1_goldg_cc3mlite_pretrain-5daf1395.pth && cd ../..
# Download data
mkdir -p data/coco/lvis
wget -O data/coco/lvis/lvis_v1_minival_inserted_image_name.json https://huggingface.co/GLIPModel/GLIP/resolve/main/lvis_v1_minival_inserted_image_name.json
mkdir -p data/texts
wget -O data/texts/lvis_v1_class_texts.json https://github.com/AILab-CVC/YOLO-World/raw/refs/heads/master/data/texts/lvis_v1_class_texts.json
# Fix YOLO-World small bug
sed -i "s/self.text_feats, None/self.text_feats, _/g" YOLO-World/yolo_world/models/detectors/yolo_world.pyπ₯ Policy Checkpoints
| Model | Description | Link |
|---|---|---|
| ReaSon-Policy | selection policy checkpoint | π€ Hugging Face |
π¬ Inference Demo
Download the policy checkpoint and place it place into checkpoints/. Run demo_reason.py to perform reinforced causal search and answer video questions:
python demo_reason.py \
--ann ann_for_test.json \
--video-id 0074f737-11cb-497d-8d07-77c3a8127391We sincerely thank the following open-source projects for providing essential components that contributed to our work