Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
270 changes: 270 additions & 0 deletions src/llama_index_cloud_sql_pg/async_reader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import json
from typing import Any, AsyncIterable, Callable, Iterable, Iterator, List, Optional

from llama_index.core.bridge.pydantic import ConfigDict
from llama_index.core.readers.base import BasePydanticReader
from llama_index.core.schema import Document
from sqlalchemy import text
from sqlalchemy.ext.asyncio import AsyncEngine

from .engine import PostgresEngine

DEFAULT_METADATA_COL = "li_metadata"


def text_formatter(row: dict, content_columns: list[str]) -> str:
"""txt document formatter."""
return " ".join(str(row[column]) for column in content_columns if column in row)


def csv_formatter(row: dict, content_columns: list[str]) -> str:
"""CSV document formatter."""
return ", ".join(str(row[column]) for column in content_columns if column in row)


def yaml_formatter(row: dict, content_columns: list[str]) -> str:
"""YAML document formatter."""
return "\n".join(
f"{column}: {str(row[column])}" for column in content_columns if column in row
)


def json_formatter(row: dict, content_columns: list[str]) -> str:
"""JSON document formatter."""
dictionary = {}
for column in content_columns:
if column in row:
dictionary[column] = row[column]
return json.dumps(dictionary)


def _parse_doc_from_row(
content_columns: Iterable[str],
metadata_columns: Iterable[str],
row: dict,
formatter: Callable = text_formatter,
metadata_json_column: Optional[str] = DEFAULT_METADATA_COL,
) -> Document:
"""Parse row into document."""
text = formatter(row, content_columns)
metadata: dict[str, Any] = {}
# unnest metadata from li_metadata column
if metadata_json_column and row.get(metadata_json_column):
for k, v in row[metadata_json_column].items():
metadata[k] = v
# load metadata from other columns
for column in metadata_columns:
if column in row and column != metadata_json_column:
metadata[column] = row[column]

return Document(text=text, extra_info=metadata)


class AsyncPostgresReader(BasePydanticReader):
"""Load documents from Cloud SQL for PostgreSQL.

Each document represents one row of the result. The `content_columns` are
written into the `text` of the document. The `metadata_columns` are written
into the `metadata` of the document. By default, first columns is written into
the `text` and everything else into the `metadata`.
"""

__create_key = object()
is_remote: bool = True

def __init__(
self,
key: object,
pool: AsyncEngine,
query: str,
content_columns: list[str],
metadata_columns: list[str],
formatter: Callable,
metadata_json_column: Optional[str] = None,
is_remote: bool = True,
) -> None:
"""AsyncPostgresReader constructor.

Args:
key (object): Prevent direct constructor usage.
engine (PostgresEngine): AsyncEngine with pool connection to the Cloud SQL Postgres database
query (Optional[str], optional): SQL query. Defaults to None.
content_columns (Optional[list[str]], optional): Column that represent a Document's page_content. Defaults to the first column.
metadata_columns (Optional[list[str]], optional): Column(s) that represent a Document's metadata. Defaults to None.
formatter (Optional[Callable], optional): A function to format page content (OneOf: format, formatter). Defaults to None.
metadata_json_column (Optional[str], optional): Column to store metadata as JSON. Defaults to "li_metadata".
is_remote (bool): Whether the data is loaded from a remote API or a local file.

Raises:
Exception: If called directly by user.
"""
if key != AsyncPostgresReader.__create_key:
raise Exception("Only create class through 'create' method!")

super().__init__(is_remote=is_remote)

self._pool = pool
self._query = query
self._content_columns = content_columns
self._metadata_columns = metadata_columns
self._formatter = formatter
self._metadata_json_column = metadata_json_column

@classmethod
async def create(
cls: type[AsyncPostgresReader],
engine: PostgresEngine,
query: Optional[str] = None,
table_name: Optional[str] = None,
schema_name: str = "public",
content_columns: Optional[list[str]] = None,
metadata_columns: Optional[list[str]] = None,
metadata_json_column: Optional[str] = None,
format: Optional[str] = None,
formatter: Optional[Callable] = None,
is_remote: bool = True,
) -> AsyncPostgresReader:
"""Create an AsyncPostgresReader instance.

Args:
engine (PostgresEngine):AsyncEngine with pool connection to the Cloud SQL Postgres database
query (Optional[str], optional): SQL query. Defaults to None.
table_name (Optional[str], optional): Name of table to query. Defaults to None.
schema_name (str, optional): Name of the schema where table is located. Defaults to "public".
content_columns (Optional[list[str]], optional): Column that represent a Document's page_content. Defaults to the first column.
metadata_columns (Optional[list[str]], optional): Column(s) that represent a Document's metadata. Defaults to None.
metadata_json_column (Optional[str], optional): Column to store metadata as JSON. Defaults to "li_metadata".
format (Optional[str], optional): Format of page content (OneOf: text, csv, YAML, JSON). Defaults to 'text'.
formatter (Optional[Callable], optional): A function to format page content (OneOf: format, formatter). Defaults to None.
is_remote (bool): Whether the data is loaded from a remote API or a local file.


Returns:
AsyncPostgresReader: A newly created instance of AsyncPostgresReader.
"""
if table_name and query:
raise ValueError("Only one of 'table_name' or 'query' should be specified.")
if not table_name and not query:
raise ValueError(
"At least one of the parameters 'table_name' or 'query' needs to be provided"
)
if format and formatter:
raise ValueError("Only one of 'format' or 'formatter' should be specified.")

if format and format not in ["csv", "text", "JSON", "YAML"]:
raise ValueError("format must be type: 'csv', 'text', 'JSON', 'YAML'")
if formatter:
formatter = formatter
elif format == "csv":
formatter = csv_formatter
elif format == "YAML":
formatter = yaml_formatter
elif format == "JSON":
formatter = json_formatter
else:
formatter = text_formatter

if not query:
query = f'SELECT * FROM "{schema_name}"."{table_name}"'

async with engine._pool.connect() as connection:
result_proxy = await connection.execute(text(query))
column_names = list(result_proxy.keys())
# Select content or default to first column
content_columns = content_columns or [column_names[0]]
# Select metadata columns
metadata_columns = metadata_columns or [
col for col in column_names if col not in content_columns
]

# Check validity of metadata json column
if metadata_json_column and metadata_json_column not in column_names:
raise ValueError(
f"Column {metadata_json_column} not found in query result {column_names}."
)

if metadata_json_column and metadata_json_column in column_names:
metadata_json_column = metadata_json_column
elif DEFAULT_METADATA_COL in column_names:
metadata_json_column = DEFAULT_METADATA_COL
else:
metadata_json_column = None

# check validity of other column
all_names = content_columns + metadata_columns
for name in all_names:
if name not in column_names:
raise ValueError(
f"Column {name} not found in query result {column_names}."
)
return cls(
key=cls.__create_key,
pool=engine._pool,
query=query,
content_columns=content_columns,
metadata_columns=metadata_columns,
formatter=formatter,
metadata_json_column=metadata_json_column,
is_remote=is_remote,
)

@classmethod
def class_name(cls) -> str:
return "AsyncPostgresReader"

async def aload_data(self) -> list[Document]:
"""Asynchronously load Cloud SQL Postgres data into Document objects."""
return [doc async for doc in self.alazy_load_data()]

async def alazy_load_data(self) -> AsyncIterable[Document]: # type: ignore
"""Asynchronously load Cloud SQL Postgres data into Document objects lazily."""
async with self._pool.connect() as connection:
result_proxy = await connection.execute(text(self._query))
# load document one by one
while True:
row = result_proxy.fetchone()
if not row:
break

row_data = {}
column_names = self._content_columns + self._metadata_columns
column_names += (
[self._metadata_json_column] if self._metadata_json_column else []
)
for column in column_names:
value = getattr(row, column)
row_data[column] = value

yield _parse_doc_from_row(
self._content_columns,
self._metadata_columns,
row_data,
self._formatter,
self._metadata_json_column,
)

def lazy_load_data(self) -> Iterable[Document]:
raise NotImplementedError(
"Sync methods are not implemented for AsyncPostgresReader. Use PostgresReader interface instead."
)

def load_data(self) -> List[Document]:
raise NotImplementedError(
"Sync methods are not implemented for AsyncPostgresReader. Use PostgresReader interface instead."
)
Loading