Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions lib/clashom.gi
Original file line number Diff line number Diff line change
Expand Up @@ -1807,7 +1807,7 @@ local classes, # classes to be constructed, the result
img:=orb[vp+j]*mats[genum];
#if img in orb then Error("HUH");fi;
Add(orb,img);
Add(reps,reps[vp+j]*mats[genum]);
Add(reps,reps[vp+j]*gens[genum]);
# repword stays the same!
Add(repwords,repword);
od;
Expand Down Expand Up @@ -1943,13 +1943,15 @@ BindGlobal("LiftClassesEATrivRep",
subs:=MTX.Homomorphisms(subs,mo);
orbsub:=Filtered(subs,x->x in orbsub);
fi;
if Length(orbsub)*Length(bas)=Length(bas[1]) then
if Length(orbsub)*Length(bas)=Length(bas[1]) and
RankMat(Concatenation(orbsub))=Length(bas[1]) then
found:=ssd;
el:=[orbsub,bas,fasize,nsgens,nsimgs,nsfgens,mo];

subs:=List([1..Length(orbsub)],x->[(x-1)*ssd+1..x*ssd]);
bas:=ImmutableMatrix(field,Concatenation(orbsub)); # this is the new basis
basinv:=bas^-1;
Assert(1,basinv<>fail);
else
Info(InfoHomClass,3,"failed ",Length(orbsub));
fi;
Expand Down
2 changes: 1 addition & 1 deletion lib/groebner.gi
Original file line number Diff line number Diff line change
Expand Up @@ -971,7 +971,7 @@ BindGlobal("GAPGBASIS",`rec(
GroebnerBasis:=function(elms,order)
local orderext, bas, baslte, fam, t, B, i, j, s;
orderext:=MonomialExtrepComparisonFun(order);
bas:=ShallowCopy(elms);
bas:=Filtered(elms,x->not IsZero(x));
baslte:=List(bas,ExtRepPolynomialRatFun);
fam:=FamilyObj(bas[1]);
baslte:=List(baslte,i->i[LeadingMonomialPosExtRep(fam,i,orderext)]);
Expand Down
4 changes: 3 additions & 1 deletion lib/oprt.gd
Original file line number Diff line number Diff line change
Expand Up @@ -898,7 +898,9 @@ end );
## <Description>
## computes a homomorphism from <A>G</A> into the symmetric group on
## <M>|<A>Omega</A>|</M> points that gives the permutation action of
## <A>G</A> on <A>Omega</A>.
## <A>G</A> on <A>Omega</A>. (In particular, this homomorphism is a
## permutation equivalence, that is the permutation image of a group element
## is given by the positions of points in <A>Omega</A>.)
## <P/>
## By default the homomorphism returned by
## <Ref Func="ActionHomomorphism" Label="for a group, an action domain, etc."/>
Expand Down