Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@ public static String generateTextWithPyTorchGreedy()
SearchConfig config = new SearchConfig();
config.setMaxSeqLength(60);

// You can use src/main/python/trace_gpt2.py to trace gpt2 model
String url = "https://djl-misc.s3.amazonaws.com/test/models/gpt2/gpt2_pt.zip";

Criteria<NDList, CausalLMOutput> criteria =
Expand Down Expand Up @@ -160,6 +161,20 @@ public static String[] generateTextWithOnnxRuntimeBeam()
long padTokenId = 220;
config.setPadTokenId(padTokenId);

// The model is converted optimum:
// https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-using-past-keysvalues-in-the-decoder
/*
* optimum-cli export onnx --model gpt2 gpt2_onnx/
*
* from transformers import AutoTokenizer
* from optimum.onnxruntime import ORTModelForCausalLM
*
* tokenizer = AutoTokenizer.from_pretrained("./gpt2_onnx/")
* model = ORTModelForCausalLM.from_pretrained("./gpt2_onnx/")
* inputs = tokenizer("My name is Arthur and I live in", return_tensors="pt")
* gen_tokens = model.generate(**inputs)
* print(tokenizer.batch_decode(gen_tokens))
*/
String url = "https://djl-misc.s3.amazonaws.com/test/models/gpt2/gpt2_onnx.zip";

Criteria<NDList, CausalLMOutput> criteria =
Expand Down
73 changes: 73 additions & 0 deletions examples/src/main/python/trace_gpt2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = 'gpt2-large'
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

# add the EOS token as PAD token to avoid warnings
model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True)

# %% model_inputs
output_attentions = False
output_hidden_states = False
model_inputs = {}

model_inputs['past_key_values'] = torch.load(
"../data/nested_tuple_" + model_name + ".pt")
past_seq = model_inputs['past_key_values'][0][0].shape[-2]
model_inputs['input_ids'] = torch.tensor([[404]])
model_inputs['position_ids'] = torch.tensor([[past_seq]])
# |attention_mask| = `len(past_key_values) + len(input_ids)`
model_inputs['attention_mask'] = torch.ones(past_seq + 1, dtype=torch.int64)

model_inputs['use_cache'] = True
model_inputs['token_type_ids'] = None

model_inputs['return_dict'] = False
model_inputs['output_attentions'] = False
model_inputs['output_hidden_states'] = False

# This is a testing of text generation
outputs = model(**model_inputs)

# %% Wrapper class of GPT2LMHeadModel
from typing import Tuple

class Tracable(torch.nn.Module):
def __init__(self, config: dict):
super().__init__()
self.model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True)
self.config = {'use_cache': config.get('use_cache', True),
'token_type_ids': config.get('token_type_ids', None),
'return_dict': config.get('return_dict', False),
'output_attentions': config.get('output_attentions', False),
'output_hidden_states': config.get('output_hidden_states', True)}

def forward(self, my_input_ids, position_ids, attention_mask, past_key_values):
return self.model(input_ids=my_input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
**self.config) # return_tensor = True

# %% create class
config = {}
tracable = Tracable(config)
input = (model_inputs['input_ids'],
model_inputs['position_ids'],
model_inputs['attention_mask'],
model_inputs['past_key_values'])

output = tracable(*input)

# %% trace
tracable.eval()

traced_model = torch.jit.trace(tracable, input)
torch.jit.save(traced_model, "../traced_GPT2_hidden.pt")

out1 = traced_model(*input)

# %% load back
loaded_model = torch.jit.load("../traced_GPT2_hidden.pt")
out2 = loaded_model(*input)