Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions dask_sql/datacontainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,10 +205,19 @@ def __init__(self, func, row_udf: bool, return_type=None):

def __call__(self, *args, **kwargs):
if self.row_udf:
df = args[0].to_frame()
for operand in args[1:]:
df[operand.name] = operand
result = df.apply(self.func, axis=1, meta=self.meta).astype(self.meta[1])
column_args = []
scalar_args = []
for operand in args:
if isinstance(operand, dd.Series):
column_args.append(operand)
else:
scalar_args.append(operand)
df = column_args[0].to_frame()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
df = column_args[0].to_frame()
df = column_args[0].to_frame()

for col in column_args[1:]:
df[col.name] = col
result = df.apply(
self.func, axis=1, args=tuple(scalar_args), meta=self.meta
).astype(self.meta[1])
else:
result = self.func(*args, **kwargs)
return result
Expand Down
11 changes: 11 additions & 0 deletions docs/pages/custom.rst
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,17 @@ These functions may be registered as above and flagged as row UDFs using the `ro

** Note: Row UDFs use `apply` which may have unpredictable performance characteristics, depending on the function and dataframe library **

UDFs written in this way can also be extended to accept scalar arguments along with the incoming row:

.. code-block:: python

def f(row, k):
return row['a'] + k

c.register_function(f, "f", [("a", np.int64), ("k", np.int64)], np.int64, row_udf=True)
c.sql("SELECT f(a, 42) FROM data")


Aggregation Functions
---------------------

Expand Down
60 changes: 60 additions & 0 deletions tests/integration/test_function.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
import operator

import dask.dataframe as dd
import numpy as np
import pytest
Expand Down Expand Up @@ -63,6 +65,64 @@ def f(row):
assert_frame_equal(return_df.reset_index(drop=True), expectation)


# Test row UDFs with one args
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
# Test row UDFs with one args
# Test row UDFs with one arg

@pytest.mark.parametrize("k", [1, 1.5, True])
@pytest.mark.parametrize(
"op", [operator.add, operator.sub, operator.mul, operator.truediv]
)
@pytest.mark.parametrize("retty", [np.int64, np.float64, np.bool_])
def test_custom_function_row_args(c, df, k, op, retty):
const_type = np.dtype(type(k)).type

def f(row, k):
return op(row["a"], k)

c.register_function(
f, "f", [("a", np.int64), ("k", const_type)], retty, row_udf=True
)

statement = f"SELECT F(a, {k}) as a from df"

return_df = c.sql(statement)
return_df = return_df.compute()
expectation = op(df[["a"]], k).astype(retty)
assert_frame_equal(return_df.reset_index(drop=True), expectation)


# Test row UDFs with one args
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
# Test row UDFs with one args
# Test row UDFs with two args

@pytest.mark.parametrize("k2", [1, 1.5, True])
@pytest.mark.parametrize("k1", [1, 1.5, True])
@pytest.mark.parametrize(
"op", [operator.add, operator.sub, operator.mul, operator.truediv]
)
@pytest.mark.parametrize("retty", [np.int64, np.float64, np.bool_])
def test_custom_function_row_two_args(c, df, k1, k2, op, retty):
const_type_k1 = np.dtype(type(k1)).type
const_type_k2 = np.dtype(type(k2)).type

def f(row, k1, k2):
x = op(row["a"], k1)
y = op(x, k2)

return y

c.register_function(
f,
"f",
[("a", np.int64), ("k1", const_type_k1), ("k2", const_type_k2)],
retty,
row_udf=True,
)

statement = f"SELECT F(a, {k1}, {k2}) as a from df"

return_df = c.sql(statement)
return_df = return_df.compute()

expectation = op(op(df[["a"]], k1), k2).astype(retty)
assert_frame_equal(return_df.reset_index(drop=True), expectation)


def test_multiple_definitions(c, df_simple):
def f(x):
return x ** 2
Expand Down