Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 21 additions & 6 deletions dask_sql/physical/rex/core/call.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,10 @@ def as_timelike(op):
raise ValueError(f"Don't know how to make {type(op)} timelike")


def is_timestamp_nano(obj):
return "int" in str(type(obj)) or "int" in str(getattr(obj, "dtype", ""))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would it make sense to use something like pd.api.types.is_integer_dtype for this check, or is there a specific case I'm missing?



class Operation:
"""Helper wrapper around a function, which is used as operator"""

Expand Down Expand Up @@ -246,6 +250,9 @@ def cast(self, operand, rex=None) -> SeriesOrScalar:
output_type = str(rex.getType())
sql_type = SqlTypeName.fromString(output_type.upper())

if output_type == "TIMESTAMP" and is_timestamp_nano(operand):
operand = operand * 10**9

if not is_frame(operand): # pragma: no cover
return sql_to_python_value(sql_type, operand)

Expand Down Expand Up @@ -607,11 +614,7 @@ def to_timestamp(self, df, format):
if is_cudf_type(df):
if format != default_format:
raise RuntimeError("Non-default timestamp formats not supported on GPU")
if df.dtype == "object":
return df
else:
nanoseconds_to_seconds = 10**9
return df * nanoseconds_to_seconds
return df
# String cases
elif type(df) == str:
return np.datetime64(datetime.strptime(df, format))
Expand Down Expand Up @@ -646,7 +649,10 @@ def timestampadd(self, unit, interval, df: SeriesOrScalar):
interval = int(interval)
if interval < 0:
raise RuntimeError(f"Negative time interval {interval} is not supported.")
df = df.astype("datetime64[ns]")
if is_timestamp_nano(df):
df = df.astype("datetime64[s]")
else:
df = df.astype("datetime64[ns]")

if is_cudf_type(df):
from cudf import DateOffset
Expand Down Expand Up @@ -690,6 +696,15 @@ def __init__(self):
super().__init__(self.datetime_sub)

def datetime_sub(self, unit, df1, df2):
if is_timestamp_nano(df1):
df1 = df1 * 10**9
if is_timestamp_nano(df2):
df2 = df2 * 10**9
if "datetime64[s]" == str(getattr(df1, "dtype", "")):
df1 = df1.astype("datetime64[ns]")
if "datetime64[s]" == str(getattr(df2, "dtype", "")):
df2 = df2.astype("datetime64[ns]")

subtraction_op = ReduceOperation(
operation=operator.sub, unary_operation=lambda x: -x
)
Expand Down
111 changes: 111 additions & 0 deletions tests/integration/test_rex.py
Original file line number Diff line number Diff line change
Expand Up @@ -1015,3 +1015,114 @@ def test_totimestamp(c, gpu):
}
)
assert_eq(df, expected_df, check_dtype=False)


@pytest.mark.parametrize("gpu", [False, pytest.param(True, marks=(pytest.mark.gpu))])
def test_scalar_timestamps(c, gpu):
df = pd.DataFrame({"d": [1203073300, 1503073700]})
c.create_table("df", df, gpu=gpu)

expected_df = pd.DataFrame(
{
"dt": [datetime(2008, 2, 20, 11, 1, 40), datetime(2017, 8, 23, 16, 28, 20)],
}
)

df1 = c.sql("SELECT to_timestamp(d) + INTERVAL '5 days' AS dt FROM df")
df2 = c.sql("SELECT CAST(d AS TIMESTAMP) + INTERVAL '5 days' AS dt FROM df")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

df1 = c.sql("SELECT TIMESTAMPADD(DAY, 5, to_timestamp(d)) AS dt FROM df")
df2 = c.sql("SELECT TIMESTAMPADD(DAY, 5, d) AS dt FROM df")
df3 = c.sql("SELECT TIMESTAMPADD(DAY, 5, CAST(d AS TIMESTAMP)) AS dt FROM df")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)
assert_eq(df3, expected_df)

expected_df = pd.DataFrame({"day": [15, 18]})
df1 = c.sql("SELECT EXTRACT(DAY FROM to_timestamp(d)) AS day FROM df")
df2 = c.sql("SELECT EXTRACT(DAY FROM CAST(d AS TIMESTAMP)) AS day FROM df")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

expected_df = pd.DataFrame(
{
"ceil_to_day": [datetime(2008, 2, 16), datetime(2017, 8, 19)],
}
)
df1 = c.sql("SELECT CEIL(to_timestamp(d) TO DAY) AS ceil_to_day FROM df")
df2 = c.sql("SELECT CEIL(CAST(d AS TIMESTAMP) TO DAY) AS ceil_to_day FROM df")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

expected_df = pd.DataFrame(
{
"floor_to_day": [datetime(2008, 2, 15), datetime(2017, 8, 18)],
}
)
df1 = c.sql("SELECT FLOOR(to_timestamp(d) TO DAY) AS floor_to_day FROM df")
df2 = c.sql("SELECT FLOOR(CAST(d AS TIMESTAMP) TO DAY) AS floor_to_day FROM df")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

df = pd.DataFrame({"d1": [1203073300], "d2": [1503073700]})
c.create_table("df", df, gpu=gpu)
expected_df = pd.DataFrame({"dt": [3472]})
df1 = c.sql(
"SELECT TIMESTAMPDIFF(DAY, to_timestamp(d1), to_timestamp(d2)) AS dt FROM df"
)
df2 = c.sql("SELECT TIMESTAMPDIFF(DAY, d1, d2) AS dt FROM df")
df3 = c.sql(
"SELECT TIMESTAMPDIFF(DAY, CAST(d1 AS TIMESTAMP), CAST(d2 AS TIMESTAMP)) AS dt FROM df"
)
assert_eq(df1, expected_df)
assert_eq(df2, expected_df, check_dtype=False)
assert_eq(df3, expected_df)

scalar1 = 1203073300
scalar2 = 1503073700

expected_df = pd.DataFrame({"dt": [datetime(2008, 2, 20, 11, 1, 40)]})

df1 = c.sql(f"SELECT to_timestamp({scalar1}) + INTERVAL '5 days' AS dt")
# df2 = c.sql(f"SELECT CAST({scalar1} AS TIMESTAMP) + INTERVAL '5 days' AS dt")
assert_eq(df1, expected_df)
# assert_eq(df2, expected_df) # TODO: Incorrect

df1 = c.sql(f"SELECT TIMESTAMPADD(DAY, 5, to_timestamp({scalar1})) AS dt")
df2 = c.sql(f"SELECT TIMESTAMPADD(DAY, 5, {scalar1}) AS dt")
df3 = c.sql(f"SELECT TIMESTAMPADD(DAY, 5, CAST({scalar1} AS TIMESTAMP)) AS dt")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)
assert_eq(df3, expected_df)

expected_df = pd.DataFrame({"day": [15]})
df1 = c.sql(f"SELECT EXTRACT(DAY FROM to_timestamp({scalar1})) AS day")
# df2 = c.sql(f"SELECT EXTRACT(DAY FROM CAST({scalar1} AS TIMESTAMP)) AS day")
assert_eq(df1, expected_df)
# assert_eq(df2, expected_df) # TODO: Incorrect

expected_df = pd.DataFrame({"ceil_to_day": [datetime(2008, 2, 16)]})
df1 = c.sql(f"SELECT CEIL(to_timestamp({scalar1}) TO DAY) AS ceil_to_day")
df2 = c.sql(f"SELECT CEIL(CAST({scalar1} AS TIMESTAMP) TO DAY) AS ceil_to_day")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

expected_df = pd.DataFrame({"floor_to_day": [datetime(2008, 2, 15)]})
df1 = c.sql(f"SELECT FLOOR(to_timestamp({scalar1}) TO DAY) AS floor_to_day")
df2 = c.sql(f"SELECT FLOOR(CAST({scalar1} AS TIMESTAMP) TO DAY) AS floor_to_day")
assert_eq(df1, expected_df)
assert_eq(df2, expected_df)

expected_df = pd.DataFrame({"dt": [3472]})
df1 = c.sql(
f"SELECT TIMESTAMPDIFF(DAY, to_timestamp({scalar1}), to_timestamp({scalar2})) AS dt"
)
df2 = c.sql(f"SELECT TIMESTAMPDIFF(DAY, {scalar1}, {scalar2}) AS dt")
df3 = c.sql(
f"SELECT TIMESTAMPDIFF(DAY, CAST({scalar1} AS TIMESTAMP), CAST({scalar2} AS TIMESTAMP)) AS dt"
)
assert_eq(df1, expected_df)
assert_eq(df2, expected_df, check_dtype=False)
assert_eq(df3, expected_df)