Tools for training neural networks for the purpose of predicting residual vorticity (residual strain and shear as well) of a velocity gradient.
# clone project
git clone https://github.com/danherbriley/flow-analysis
cd your-repo-name
# [OPTIONAL] create conda environment
python3.10 -m venv venv
source venv/bin/activate
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt# clone project
git clone https://github.com/danherbriley/flow-analysis
cd your-repo-name
# create conda environment and install dependencies
conda env create -f environment.yaml -n myenv
# activate conda environment
conda activate myenvTrain model with default configuration
# train on CPU
python src/train.py trainer=cpu
# train on GPU
python src/train.py trainer=gpuTrain model with chosen experiment configuration from configs/experiment/
python src/train.py experiment=experiment_name.yamlYou can override any parameter from command line like this
python src/train.py trainer.max_epochs=20 data.batch_size=64- Seed for reproducibility is set globally in
src/train.py