Skip to content
Closed
Show file tree
Hide file tree
Changes from 11 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions examples/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,11 @@
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_${scala.binary.version}</artifactId>
<version>3.2.0</version>
</dependency>
</dependencies>

<build>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.mllib

import org.apache.log4j.{Level, Logger}
import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification._
import org.apache.spark.mllib.evaluation.binary.BinaryClassificationMetrics
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.optimization.{SquaredL2Updater, L1Updater}

/**
* An example app for binary classification. Run with
* {{{
* ./bin/run-example org.apache.spark.examples.mllib.BinaryClassification
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object BinaryClassification extends App {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think ti is better to declare a main rather than extending App. It is more familiar to readers from the Java/C land.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.


object Algorithm extends Enumeration {
type Algorithm = Value
val SVM, LR = Value
}

object RegType extends Enumeration {
type RegType = Value
val L1, L2 = Value
}

import Algorithm._
import RegType._

case class Params(
input: String = null,
numIterations: Int = 100,
stepSize: Double = 1.0,
algorithm: Algorithm = LR,
regType: RegType = L2,
regParam: Double = 0.1)

val defaultParams = Params()

val parser = new OptionParser[Params]("BinaryClassification") {
head("BinaryClassification: an example app for binary classification.")
opt[Int]("numIterations")
.text("number of iterations")
.action((x, c) => c.copy(numIterations = x))
opt[Double]("stepSize")
.text(s"initial step size, default: ${defaultParams.stepSize}")
.action((x, c) => c.copy(stepSize = x))
opt[String]("algorithm")
.text(s"algorithm (${Algorithm.values.mkString(",")}), " +
s"default: ${defaultParams.algorithm}")
.action((x, c) => c.copy(algorithm = Algorithm.withName(x)))
opt[String]("regType")
.text(s"regularization type (${RegType.values.mkString(",")}), " +
s"default: ${defaultParams.regType}")
.action((x, c) => c.copy(regType = RegType.withName(x)))
opt[Double]("regParam")
.text(s"regularization parameter, default: ${defaultParams.regParam}")
arg[String]("<input>")
.required()
.text("input paths to labeled examples in LIBSVM format")
.action((x, c) => c.copy(input = x))
}

parser.parse(args, defaultParams).map { params =>
run(params)
} getOrElse {
sys.exit(1)
}

def run(params: Params) {
val conf = new SparkConf().setAppName(s"BinaryClassification with $params")
val sc = new SparkContext(conf)

Logger.getRootLogger.setLevel(Level.WARN)

val examples = MLUtils.loadLibSVMData(sc, params.input).cache()

val splits = examples.randomSplit(Array(0.8, 0.2))
val training = splits(0).cache()
val test = splits(1).cache()

val numTraining = training.count()
val numTest = test.count()
println(s"Training: $numTraining, test: $numTest.")

examples.unpersist(blocking = false)

val updater = params.regType match {
case L1 =>
new L1Updater()
case L2 =>
new SquaredL2Updater()
}

val model = params.algorithm match {
case LR =>
val algorithm = new LogisticRegressionWithSGD()
algorithm.optimizer
.setNumIterations(params.numIterations)
.setStepSize(params.stepSize)
.setUpdater(updater)
.setRegParam(params.regParam)
algorithm.run(training).clearThreshold()
case SVM =>
val algorithm = new SVMWithSGD()
algorithm.optimizer
.setNumIterations(params.numIterations)
.setStepSize(params.stepSize)
.setUpdater(updater)
.setRegParam(params.regParam)
algorithm.run(training).clearThreshold()
}

val prediction = model.predict(test.map(_.features))
val predictionAndLabel = prediction.zip(test.map(_.label))

val metrics = new BinaryClassificationMetrics(predictionAndLabel)

println(s"Test areaUnderPR = ${metrics.areaUnderPR()}.")
println(s"Test areaUnderROC = ${metrics.areaUnderROC()}.")

sc.stop()
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.mllib

import org.apache.spark.{Logging, SparkConf, SparkContext}
import org.apache.spark.SparkContext._
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.configuration._
import org.apache.spark.mllib.tree.configuration.Algo._
import org.apache.spark.mllib.tree.impurity._
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.rdd.RDD

/**
* An example runner for decision tree. Run with
* {{{
* ./bin/spark-example org.apache.spark.examples.mllib.DecisionTreeRunner [options]
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object DecisionTreeRunner extends Logging {

private val usage =
"""
|Usage: DecisionTreeRunner --algo <Classification, Regression> --trainDataDir path
| --testDataDir path --maxDepth num [--impurity <Gini,Entropy,Variance>] [--maxBins num]
""".stripMargin

def main(args: Array[String]) {

if (args.length < 2) {
System.err.println(usage)
System.exit(1)
}

val conf = new SparkConf().setAppName("DecisionTreeRunner")
val sc = new SparkContext(conf)

val argList = args.toList
type OptionMap = Map[Symbol, Any]

def nextOption(map : OptionMap, list: List[String]): OptionMap = {
list match {
case Nil => map
case "--algo" :: string :: tail => nextOption(map ++ Map('algo -> string), tail)
case "--impurity" :: string :: tail => nextOption(map ++ Map('impurity -> string), tail)
case "--maxDepth" :: string :: tail => nextOption(map ++ Map('maxDepth -> string), tail)
case "--maxBins" :: string :: tail => nextOption(map ++ Map('maxBins -> string), tail)
case "--trainDataDir" :: string :: tail => nextOption(map ++ Map('trainDataDir -> string)
, tail)
case "--testDataDir" :: string :: tail => nextOption(map ++ Map('testDataDir -> string),
tail)
case string :: Nil => nextOption(map ++ Map('infile -> string), list.tail)
case option :: tail => logError("Unknown option " + option)
sys.exit(1)
}
}
val options = nextOption(Map(), argList)
logDebug(options.toString())

// Load training data.
val trainData = loadLabeledData(sc, options.get('trainDataDir).get.toString)

// Identify the type of algorithm.
val algoStr = options.get('algo).get.toString
val algo = algoStr match {
case "Classification" => Classification
case "Regression" => Regression
}

// Identify the type of impurity.
val impurityStr = options.getOrElse('impurity,
if (algo == Classification) "Gini" else "Variance").toString
val impurity = impurityStr match {
case "Gini" => Gini
case "Entropy" => Entropy
case "Variance" => Variance
}

val maxDepth = options.getOrElse('maxDepth, "1").toString.toInt
val maxBins = options.getOrElse('maxBins, "100").toString.toInt

val strategy = new Strategy(algo, impurity, maxDepth, maxBins)
val model = DecisionTree.train(trainData, strategy)

// Load test data.
val testData = loadLabeledData(sc, options.get('testDataDir).get.toString)

// Measure algorithm accuracy
if (algo == Classification) {
val accuracy = accuracyScore(model, testData)
logDebug("accuracy = " + accuracy)
}

if (algo == Regression) {
val mse = meanSquaredError(model, testData)
logDebug("mean square error = " + mse)
}

sc.stop()
}

/**
* Load labeled data from a file. The data format used here is
* <L>, <f1> <f2> ...,
* where <f1>, <f2> are feature values in Double and <L> is the corresponding label as Double.
*
* @param sc SparkContext
* @param dir Directory to the input data files.
* @return An RDD of LabeledPoint. Each labeled point has two elements: the first element is
* the label, and the second element represents the feature values (an array of Double).
*/
private def loadLabeledData(sc: SparkContext, dir: String): RDD[LabeledPoint] = {
sc.textFile(dir).map { line =>
val parts = line.trim().split(",")
val label = parts(0).toDouble
val features = Vectors.dense(parts.slice(1,parts.length).map(_.toDouble))
LabeledPoint(label, features)
}
}

// TODO: Port this method to a generic metrics package.
/**
* Calculates the classifier accuracy.
*/
private def accuracyScore(model: DecisionTreeModel, data: RDD[LabeledPoint],
threshold: Double = 0.5): Double = {
def predictedValue(features: Vector) = {
if (model.predict(features) < threshold) 0.0 else 1.0
}
val correctCount = data.filter(y => predictedValue(y.features) == y.label).count()
val count = data.count()
logDebug("correct prediction count = " + correctCount)
logDebug("data count = " + count)
correctCount.toDouble / count
}

// TODO: Port this method to a generic metrics package
/**
* Calculates the mean squared error for regression.
*/
private def meanSquaredError(tree: DecisionTreeModel, data: RDD[LabeledPoint]): Double = {
data.map { y =>
val err = tree.predict(y.features) - y.label
err * err
}.mean()
}
}
Loading