-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-46395][DOCS] Assign Spark configs to groups for use in documentation #44756
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from 2 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
ff67730
new approach to config groups
nchammas 914737c
validate group names
nchammas ad87dfb
clarify rules in the config file
nchammas 7efe3a5
Merge branch 'master' into SPARK-46395-config-groups-yaml
nchammas fbc926b
Merge branch 'master' into SPARK-46395-config-groups-yaml
nchammas File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1 +1,2 @@ | ||
| generated-*.html | ||
| _generated/ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,227 @@ | ||
| # | ||
| # Licensed to the Apache Software Foundation (ASF) under one or more | ||
| # contributor license agreements. See the NOTICE file distributed with | ||
| # this work for additional information regarding copyright ownership. | ||
| # The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| # (the "License"); you may not use this file except in compliance with | ||
| # the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| # | ||
| import itertools | ||
| import os.path | ||
| import re | ||
| import shutil | ||
|
|
||
| from collections import namedtuple, defaultdict | ||
| from pathlib import Path | ||
| from textwrap import dedent | ||
|
|
||
| # To avoid adding new direct dependencies, we import from within mkdocs. | ||
| # This is not ideal as unrelated updates to mkdocs may break this script. | ||
| # If we clean up our Python dev dependency management story, we should a) add | ||
| # the appropriate direct dependencies, and b) migrate away from PyYAML to | ||
| # a library like StrictYAML that does not allow duplicate keys. | ||
| # See: https://hitchdev.com/strictyaml/why/duplicate-keys-disallowed/ | ||
| from mkdocs.structure.pages import markdown | ||
| from mkdocs.utils.yaml import yaml | ||
|
|
||
| from pyspark.java_gateway import launch_gateway | ||
|
|
||
| SPARK_PROJECT_ROOT = Path(__file__).parents[2] | ||
| CONFIG_TABLES_DIR = SPARK_PROJECT_ROOT / "docs" / "_generated" / "config_tables" | ||
| CONFIG_GROUPS_PATH = Path(__file__).parent / "config-groups.yaml" | ||
| RESERVED_CONFIG_GROUPS = {"sql-runtime", "sql-static"} | ||
|
|
||
| ConfigEntry = namedtuple( | ||
| "ConfigEntry", [ | ||
| "name", | ||
| "default", | ||
| "description", | ||
| "version", | ||
| ] | ||
| ) | ||
|
|
||
|
|
||
| def get_all_configs(jvm): | ||
| """ | ||
| Get all public Spark configurations. | ||
| """ | ||
| all_configs = dict() | ||
| sql_runtime_configs = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listRuntimeSQLConfigs() | ||
| sql_static_configs = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listStaticSQLConfigs() | ||
| raw_configs = itertools.chain(sql_runtime_configs, sql_static_configs) | ||
| for raw_config in raw_configs: | ||
| config_name = raw_config._1() | ||
| config = ConfigEntry( | ||
| name=raw_config._1(), | ||
| default=raw_config._2(), | ||
| description=raw_config._3(), | ||
| version=raw_config._4(), | ||
| ) | ||
| all_configs[config_name] = config | ||
| return all_configs | ||
|
|
||
|
|
||
| def get_config_groups(jvm, config_groups_path): | ||
| """ | ||
| Load the config groups defined at the provided path, and also generate some | ||
| additional config groups that are automatically managed. | ||
| """ | ||
| with open(config_groups_path) as f: | ||
| _config_groups = yaml.safe_load(f) | ||
| config_groups = defaultdict(set, { | ||
| k: set(v) if v else set() | ||
| for k, v in _config_groups.items() | ||
| }) | ||
|
|
||
| bad_group_names = { | ||
| group for group in config_groups | ||
| if not re.fullmatch(r"[a-z0-9-]+", group) | ||
| } | ||
| if bad_group_names: | ||
| raise ValueError( | ||
| "Only lower case letters, digits, and dashes are allowed in group names. " | ||
| f"The following group names are invalid: {', '.join(bad_group_names)}" | ||
| ) | ||
|
|
||
| reserved_groups_used = config_groups.keys() & RESERVED_CONFIG_GROUPS | ||
| if reserved_groups_used: | ||
| raise ValueError( | ||
| f"The config groups defined at '{config_groups_path}' include the following " | ||
| f"group names which are reserved: {', '.join(reserved_groups_used)}" | ||
| ) | ||
|
|
||
| sql_runtime_configs = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listRuntimeSQLConfigs() | ||
| sql_static_configs = jvm.org.apache.spark.sql.api.python.PythonSQLUtils.listStaticSQLConfigs() | ||
|
|
||
| # These groups are automatically generated, as opposed to user-defined. | ||
| for (group, raw_configs) in [ | ||
| ("sql-runtime", sql_runtime_configs), | ||
| ("sql-static", sql_static_configs), | ||
| ]: | ||
| for raw_config in raw_configs: | ||
| config_name = raw_config._1() | ||
| config_groups[group].add(config_name) | ||
|
|
||
| return config_groups | ||
|
|
||
|
|
||
| def get_normalized_default(config): | ||
| """ | ||
| Get the config's default value and normalize it so that: | ||
| - Dynamic defaults that are set at runtime are mapped to a non-dynamic definition. | ||
| - Other values that look like HTML tags are reformatted so they display properly. | ||
| """ | ||
| value_reference_pattern = re.compile(r"^<value of (\S*)>$") | ||
|
|
||
| if config.name == "spark.sql.session.timeZone": | ||
| default = "(value of local timezone)" | ||
| elif config.name == "spark.sql.warehouse.dir": | ||
| default = "(value of <code>$PWD/spark-warehouse</code>)" | ||
| elif config.default == "<undefined>": | ||
| default = "(none)" | ||
| elif config.default.startswith("<value of "): | ||
| referenced_config_name = value_reference_pattern.match(config.default).group(1) | ||
| default = "(value of <code>{}</code>)".format(referenced_config_name) | ||
| else: | ||
| default = config.default | ||
|
|
||
| if default.startswith("<"): | ||
| raise ValueError( | ||
| f"Unhandled reference in config docs. Config '{config.name}' " | ||
| f"has default '{config.default}' that looks like an HTML tag." | ||
| ) | ||
|
|
||
| return default | ||
|
|
||
|
|
||
| def generate_config_table_html(group, configs, path): | ||
| """ | ||
| Generates an HTML table at `path` for the provided configs. | ||
|
|
||
| The table will look something like this: | ||
|
|
||
| ```html | ||
| <table class="table"> | ||
| <tr><th>Property Name</th><th>Default</th><th>Meaning</th><th>Since Version</th></tr> | ||
|
|
||
| <tr> | ||
| <td><code>spark.sql.adaptive.enabled</code></td> | ||
| <td>true</td> | ||
| <td><p>When true, enable adaptive query execution.</p></td> | ||
| <td>1.6.0</td> | ||
| </tr> | ||
|
|
||
| ... | ||
|
|
||
| </table> | ||
| ``` | ||
| """ | ||
| with open(path, 'w') as f: | ||
| f.write(dedent( | ||
| """ | ||
| <table class="table"> | ||
| <tr><th>Property Name</th><th>Default</th><th>Meaning</th><th>Since Version</th></tr> | ||
| """ | ||
| )) | ||
| for config in sorted(configs, key=lambda x: x.name): | ||
| f.write(dedent( | ||
| """ | ||
| <tr id="{anchor}"> | ||
| <td> | ||
| <span style="white-space:nowrap"> | ||
| <a href="#{anchor}"><code>#</code></a> | ||
| <code>{name}</code> | ||
| </span> | ||
| </td> | ||
| <td>{default}</td> | ||
| <td>{description}</td> | ||
| <td>{version}</td> | ||
| </tr> | ||
| """ | ||
| .format( | ||
| # Making the group part of the anchor id ensures unique anchors | ||
| # even if a config happens to show up multiple times on a given page. | ||
| anchor=f"{config.name}-{group}", | ||
| name=config.name, | ||
| default=get_normalized_default(config), | ||
| description=markdown.markdown(config.description), | ||
| version=config.version, | ||
| ) | ||
| )) | ||
| f.write("</table>\n") | ||
|
|
||
|
|
||
| def generate_config_tables(config_groups, all_configs): | ||
| for group in sorted(config_groups): | ||
| html_table_path = CONFIG_TABLES_DIR / f"{group}.html" | ||
| configs_in_group = [] | ||
| for config_name in config_groups[group]: | ||
| if config_name not in all_configs: | ||
| raise ValueError( | ||
| f"Could not find config '{config_name}'. Make sure it's typed " | ||
| "correctly and refers to a public configuration." | ||
| ) | ||
| configs_in_group.append(all_configs[config_name]) | ||
| generate_config_table_html( | ||
| group=group, | ||
| configs=configs_in_group, | ||
| path=html_table_path, | ||
| ) | ||
| print("Generated:", os.path.relpath(html_table_path, start=SPARK_PROJECT_ROOT)) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| shutil.rmtree(CONFIG_TABLES_DIR, ignore_errors=True) | ||
| CONFIG_TABLES_DIR.mkdir(parents=True) | ||
| jvm = launch_gateway().jvm | ||
| all_configs = get_all_configs(jvm) | ||
| config_groups = get_config_groups(jvm, CONFIG_GROUPS_PATH) | ||
| generate_config_tables(config_groups, all_configs) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,50 @@ | ||
| # HTML tables will be generated for each of the config groups defined here. | ||
| # | ||
| # NOTE: | ||
| # [email protected] will silently overwrite the value of a key if it is defined | ||
| # multiple times. Be sure not to accidentally define a group more than once. | ||
| # See: https://github.com/yaml/pyyaml/issues/165 | ||
| sql-tuning-caching-data: | ||
| - spark.sql.inMemoryColumnarStorage.compressed | ||
| - spark.sql.inMemoryColumnarStorage.batchSize | ||
| sql-tuning-broadcast: | ||
| - spark.sql.autoBroadcastJoinThreshold | ||
| - spark.sql.broadcastTimeout | ||
| sql-tuning-partitions: | ||
| - spark.sql.shuffle.partitions | ||
| - spark.sql.sources.parallelPartitionDiscovery.threshold | ||
| - spark.sql.files.maxPartitionBytes | ||
| - spark.sql.files.minPartitionNum | ||
| - spark.sql.files.maxPartitionNum | ||
| sql-tuning-cbo: | ||
| - spark.sql.cbo.enabled | ||
| - spark.sql.cbo.planStats.enabled | ||
| - spark.sql.cbo.joinReorder.enabled | ||
| - spark.sql.cbo.joinReorder.dp.threshold | ||
| # - spark.sql.cbo.joinReorder.card.weight | ||
| - spark.sql.cbo.joinReorder.dp.star.filter | ||
| - spark.sql.cbo.starSchemaDetection | ||
| sql-tuning-aqe: | ||
| - spark.sql.adaptive.enabled | ||
| sql-tuning-aqe-coalesce-partitions: | ||
| - spark.sql.adaptive.advisoryPartitionSizeInBytes | ||
| - spark.sql.adaptive.coalescePartitions.enabled | ||
| - spark.sql.adaptive.coalescePartitions.parallelismFirst | ||
| - spark.sql.adaptive.coalescePartitions.minPartitionSize | ||
| - spark.sql.adaptive.coalescePartitions.initialPartitionNum | ||
| sql-tuning-aqe-broadcast-join: | ||
| - spark.sql.adaptive.localShuffleReader.enabled | ||
| - spark.sql.adaptive.autoBroadcastJoinThreshold | ||
| sql-tuning-aqe-skew-join: | ||
| - spark.sql.adaptive.skewJoin.enabled | ||
| - spark.sql.adaptive.skewJoin.skewedPartitionFactor | ||
| - spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes | ||
| - spark.sql.adaptive.forceOptimizeSkewedJoin | ||
| sql-tuning-aqe-advanced: | ||
| - spark.sql.adaptive.optimizer.excludedRules | ||
| - spark.sql.adaptive.customCostEvaluatorClass | ||
| sql-tuning-aqe-shuffled-hash-join: | ||
| - spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold | ||
| sql-tuning-aqe-skewed-shuffle-partitions: | ||
| - spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled | ||
| - spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.