Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion docs/sql-migration-guide-upgrade.md
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,9 @@ license: |

- Since Spark 3.0, substitution order of nested WITH clauses is changed and an inner CTE definition takes precedence over an outer. In version 2.4 and earlier, `WITH t AS (SELECT 1), t2 AS (WITH t AS (SELECT 2) SELECT * FROM t) SELECT * FROM t2` returns `1` while in version 3.0 it returns `2`. The previous behaviour can be restored by setting `spark.sql.legacy.ctePrecedence.enabled` to `true`.

- Since Spark 3.0, the `add_months` function does not adjust the resulting date to a last day of month if the original date is a last day of months. For example, `select add_months(DATE'2019-02-28', 1)` results `2019-03-28`. In Spark version 2.4 and earlier, the resulting date is adjusted when the original date is a last day of months. For example, adding a month to `2019-02-28` resultes in `2019-03-31`.
- Since Spark 3.0, the `add_months` function does not adjust the resulting date to a last day of month if the original date is a last day of months. For example, `select add_months(DATE'2019-02-28', 1)` results `2019-03-28`. In Spark version 2.4 and earlier, the resulting date is adjusted when the original date is a last day of months. For example, adding a month to `2019-02-28` results in `2019-03-31`.
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just a typo fix from resultes -> results.


- Since Spark 3.0, 0-argument Java UDF is executed in the executor side identically with other UDFs. In Spark version 2.4 and earlier, 0-argument Java UDF alone was executed in the driver side, and the result was propagated to executors, which might be more performant in some cases but caused inconsistency with a correctness issue in some cases.

## Upgrading from Spark SQL 2.4 to 2.4.1

Expand Down