Skip to content
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -40,11 +40,19 @@ private[sql] object ParquetSchemaPruning extends Rule[LogicalPlan] {
plan
}

// `PhysicalOperation` pattern returns relation operator's outputs if there is no
// projects on it. In this case, we don't need to do schema pruning.
private def directOutput(projects: Seq[NamedExpression], plan: LogicalPlan): Boolean = {
projects.length == plan.output.length && projects.zip(plan.output).forall {
case (l, r) => l.name == r.name && l.dataType.sameType(r.dataType)
}
}

private def apply0(plan: LogicalPlan): LogicalPlan =
plan transformDown {
case op @ PhysicalOperation(projects, filters,
l @ LogicalRelation(hadoopFsRelation: HadoopFsRelation, _, _, _))
if canPruneRelation(hadoopFsRelation) =>
if canPruneRelation(hadoopFsRelation) && !directOutput(projects, l) =>
val (normalizedProjects, normalizedFilters) =
normalizeAttributeRefNames(l, projects, filters)
val requestedRootFields = identifyRootFields(normalizedProjects, normalizedFilters)
Expand Down Expand Up @@ -119,7 +127,12 @@ private[sql] object ParquetSchemaPruning extends Rule[LogicalPlan] {
.distinct.partition(_.contentAccessed)

optRootFields.filter { opt =>
!rootFields.exists(_.field.name == opt.field.name)
!rootFields.exists { root =>
val rootFieldType = StructType(Array(root.field))
val optFieldType = StructType(Array(opt.field))
val merged = optFieldType.merge(rootFieldType)
root.field.name == opt.field.name && merged.sameType(optFieldType)
}
} ++ rootFields
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ import org.apache.spark.sql.{DataFrame, QueryTest, Row}
import org.apache.spark.sql.catalyst.SchemaPruningTest
import org.apache.spark.sql.catalyst.parser.CatalystSqlParser
import org.apache.spark.sql.execution.FileSourceScanExec
import org.apache.spark.sql.functions._
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.test.SharedSQLContext
import org.apache.spark.sql.types.StructType
Expand Down Expand Up @@ -217,6 +218,41 @@ class ParquetSchemaPruningSuite
Row("Y.") :: Nil)
}

testSchemaPruning("select one complex field and having is null predicate on another " +
"complex field") {
val query = sql("select * from contacts")
.where("name.middle is not null")
.select(
"id",
"name.first",
"name.middle",
"name.last"
)
.where("last = 'Jones'")
.select(count("id")).toDF()
checkScan(query,
"struct<id:int,name:struct<middle:string,last:string>>")
checkAnswer(query, Row(0) :: Nil)
}

testSchemaPruning("select one deep nested complex field and having is null predicate on " +
"another deep nested complex field") {
val query = sql("select * from contacts")
.where("employer.company.address is not null")
.selectExpr(
"id",
"name.first",
"name.middle",
"name.last",
"employer.id as employer_id"
)
.where("employer_id = 0")
.select(count("id")).toDF()
checkScan(query,
"struct<id:int,employer:struct<id:int,company:struct<address:string>>>")
checkAnswer(query, Row(1) :: Nil)
}

private def testSchemaPruning(testName: String)(testThunk: => Unit) {
test(s"Spark vectorized reader - without partition data column - $testName") {
withSQLConf(SQLConf.PARQUET_VECTORIZED_READER_ENABLED.key -> "true") {
Expand Down