Skip to content
Closed
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions examples/src/main/python/als.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,3 +97,5 @@ def update(i, vec, mat, ratings):
error = rmse(R, ms, us)
print "Iteration %d:" % i
print "\nRMSE: %5.4f\n" % error

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/cassandra_inputformat.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,3 +77,5 @@
output = cass_rdd.collect()
for (k, v) in output:
print (k, v)

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/cassandra_outputformat.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,5 @@
conf=conf,
keyConverter="org.apache.spark.examples.pythonconverters.ToCassandraCQLKeyConverter",
valueConverter="org.apache.spark.examples.pythonconverters.ToCassandraCQLValueConverter")

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/hbase_inputformat.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,3 +71,5 @@
output = hbase_rdd.collect()
for (k, v) in output:
print (k, v)

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/hbase_outputformat.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,3 +63,5 @@
conf=conf,
keyConverter="org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter",
valueConverter="org.apache.spark.examples.pythonconverters.StringListToPutConverter")

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,3 +77,5 @@ def closestPoint(p, centers):
kPoints[x] = y

print "Final centers: " + str(kPoints)

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/logistic_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,3 +80,5 @@ def add(x, y):
w -= points.map(lambda m: gradient(m, w)).reduce(add)

print "Final w: " + str(w)

sc.stop()
5 changes: 5 additions & 0 deletions examples/src/main/python/mllib/decision_tree_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@

"""
Decision tree classification and regression using MLlib.

This example requires NumPy (http://www.numpy.org/).
"""

import numpy, os, sys
Expand Down Expand Up @@ -117,6 +119,7 @@ def usage():
if len(sys.argv) == 2:
dataPath = sys.argv[1]
if not os.path.isfile(dataPath):
sc.stop()
usage()
points = MLUtils.loadLibSVMFile(sc, dataPath)

Expand All @@ -131,3 +134,5 @@ def usage():
print " Model depth: %d\n" % model.depth()
print " Training accuracy: %g\n" % getAccuracy(model, reindexedData)
print model

sc.stop()
1 change: 1 addition & 0 deletions examples/src/main/python/mllib/kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,4 @@ def parseVector(line):
k = int(sys.argv[2])
model = KMeans.train(data, k)
print "Final centers: " + str(model.clusterCenters)
sc.stop()
1 change: 1 addition & 0 deletions examples/src/main/python/mllib/logistic_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,4 @@ def parsePoint(line):
model = LogisticRegressionWithSGD.train(points, iterations)
print "Final weights: " + str(model.weights)
print "Final intercept: " + str(model.intercept)
sc.stop()
88 changes: 88 additions & 0 deletions examples/src/main/python/mllib/random_and_sampled_rdds.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Randomly generated and sampled RDDs.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't quite understand why putting random data generation and sampling in a single example file. We can demo generating random uniform/normal/guassian/poisson RDDs in one example, and then stratified sampling in another (e.g., sampling based on the label to re-balance positive/negative examples).

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure, I can separate them. I'll call them random_rdds.py and sampled_rdds.py

"""

import sys

from pyspark import SparkContext
from pyspark.mllib.random import RandomRDDGenerators
from pyspark.mllib.util import MLUtils



if __name__ == "__main__":
if len(sys.argv) not in [1, 2]:
print >> sys.stderr, "Usage: logistic_regression <libsvm data file>"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

help message needs update

exit(-1)
if len(sys.argv) == 2:
datapath = sys.argv[1]
else:
datapath = 'data/mllib/sample_binary_classification_data.txt'

sc = SparkContext(appName="PythonRandomAndSampledRDDs")

points = MLUtils.loadLibSVMFile(sc, datapath)

numExamples = 10000 # number of examples to generate
fraction = 0.1 # fraction of data to sample

# Example: RandomRDDGenerators
normalRDD = RandomRDDGenerators.normalRDD(sc, numExamples)
print 'Generated RDD of %d examples sampled from a unit normal distribution' % normalRDD.count()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

a unit -> the standard

We can also call normalRDD.stats() to get the basic statistics.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This file shows off different functionality than normalRDD.stats(). normalRDD.stats() seems very similar to MultivariateStatisticalSummary / MultivariateOnlineSummarizer. Why are normalRDD.stats() and statcounter.py not following the MultivariateStatisticalSummary / MultivariateOnlineSummarizer APIs (for which there are no Python APIs currently)?

normalVectorRDD = RandomRDDGenerators.normalVectorRDD(sc, numRows = numExamples, numCols = 2)
print 'Generated RDD of %d examples of length-2 vectors.' % normalVectorRDD.count()

print ''
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

print '' -> print


# Example: RDD.sample() and RDD.takeSample()
exactSampleSize = int(numExamples * fraction)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

exactSampleSize -> expectedSampleSize?

print 'Sampling RDD using fraction %g. Expected sample size = %d.' \
% (fraction, exactSampleSize)
sampledRDD = normalRDD.sample(withReplacement = True, fraction = fraction)
print ' RDD.sample(): sample has %d examples' % sampledRDD.count()
sampledArray = normalRDD.takeSample(withReplacement = True, num = exactSampleSize)
print ' RDD.takeSample(): sample has %d examples' % len(sampledArray)

print ''

# Example: RDD.sampleByKey()
examples = MLUtils.loadLibSVMFile(sc, datapath)
sizeA = examples.count()
print 'Loaded data with %d examples from file: %s' % (sizeA, datapath)
keyedRDD = examples.map(lambda lp: (int(lp.label), lp.features))
print ' Keyed data using label (Int) as key ==> Orig'
# Count examples per label in original data.
keyCountsA = keyedRDD.countByKey()
# Subsample, and count examples per label in sampled data.
fractions = {}
for k in keyCountsA.keys():
fractions[k] = fraction
sampledByKeyRDD = \
keyedRDD.sampleByKey(withReplacement = True, fractions = fractions)#, exact = True)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove #, exact = True) because we don't support it in Python

keyCountsB = sampledByKeyRDD.countByKey()
sizeB = sum(keyCountsB.values())
print ' Sampled %d examples using approximate stratified sampling (by label). ==> Sample' \
% sizeB
print ' \tFractions of examples with key'
print 'Key\tOrig\tSample'
for k in sorted(keyCountsA.keys()):
print '%d\t%g\t%g' % (k, keyCountsA[k] / float(sizeA), keyCountsB[k] / float(sizeB))

sc.stop()
60 changes: 60 additions & 0 deletions examples/src/main/python/mllib/statistical_summary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
#
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

correlations.py for pearson and spearman?

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Statistical summarization using MLlib.
"""

import sys

from pyspark import SparkContext
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.stat import Statistics
from pyspark.mllib.util import MLUtils


if __name__ == "__main__":
if len(sys.argv) not in [1,2]:
print >> sys.stderr, "Usage: statistical_summary (<file>)"
exit(-1)
sc = SparkContext(appName="PythonStatisticalSummary")
if len(sys.argv) == 2:
filepath = sys.argv[1]
else:
filepath = 'data/mllib/sample_linear_regression_data.txt'
corrType = 'pearson'

points = MLUtils.loadLibSVMFile(sc, filepath)\
.map(lambda lp: LabeledPoint(lp.label, lp.features.toDense()))

print ''
print 'Summary of data file: ' + filepath
print '%d data points' % points.count()

# Statistics (correlations)
print ''
print 'Correlation (%s) between label and each feature' % corrType
print 'Feature\tCorrelation'
numFeatures = points.take(1)[0].features.size
labelRDD = points.map(lambda lp: lp.label)
for i in range(numFeatures):
featureRDD = points.map(lambda lp: lp.features[i])
corr = Statistics.corr(labelRDD, featureRDD, corrType)
print '%d\t%g' % (i, corr)
print ''

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/pagerank.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,3 +68,5 @@ def parseNeighbors(urls):
# Collects all URL ranks and dump them to console.
for (link, rank) in ranks.collect():
print "%s has rank: %s." % (link, rank)

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/pi.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,3 +37,5 @@ def f(_):

count = sc.parallelize(xrange(1, n+1), slices).map(f).reduce(add)
print "Pi is roughly %f" % (4.0 * count / n)

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/sort.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,5 @@
output = sortedCount.collect()
for (num, unitcount) in output:
print num

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/transitive_closure.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,3 +64,5 @@ def generateGraph():
break

print "TC has %i edges" % tc.count()

sc.stop()
2 changes: 2 additions & 0 deletions examples/src/main/python/wordcount.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,5 @@
output = counts.collect()
for (word, count) in output:
print "%s: %i" % (word, count)

sc.stop()
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.examples.mllib

import org.apache.spark.mllib.random.RandomRDDGenerators
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._

/**
* An example app for randomly generated and sampled RDDs. Run with
* {{{
* bin/run-example org.apache.spark.examples.mllib.RandomAndSampledRDDs
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object RandomAndSampledRDDs extends App {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto: It may be better if we separate random data generation and sampling.

There are some caveats with scala.App. Maybe we should remove extends App and create def main explicitly.


case class Params(input: String = "data/mllib/sample_binary_classification_data.txt")

val defaultParams = Params()

val parser = new OptionParser[Params]("RandomAndSampledRDDs") {
head("RandomAndSampledRDDs: an example app for randomly generated and sampled RDDs.")
opt[String]("input")
.text(s"Input path to labeled examples in LIBSVM format, default: ${defaultParams.input}")
.action((x, c) => c.copy(input = x))
note(
"""
|For example, the following command runs this app:
|
| bin/spark-submit --class org.apache.spark.examples.mllib.RandomAndSampledRDDs \
| examples/target/scala-*/spark-examples-*.jar
""".stripMargin)
}

parser.parse(args, defaultParams).map { params =>
run(params)
} getOrElse {
sys.exit(1)
}

def run(params: Params) {
val conf = new SparkConf().setAppName(s"RandomAndSampledRDDs with $params")
val sc = new SparkContext(conf)

val numExamples = 10000 // number of examples to generate
val fraction = 0.1 // fraction of data to sample

// Example: RandomRDDGenerators
val normalRDD: RDD[Double] = RandomRDDGenerators.normalRDD(sc, numExamples)
println(s"Generated RDD of ${normalRDD.count()} examples sampled from a unit normal distribution")
val normalVectorRDD =
RandomRDDGenerators.normalVectorRDD(sc, numRows = numExamples, numCols = 2)
println(s"Generated RDD of ${normalVectorRDD.count()} examples of length-2 vectors.")

println()

// Example: RDD.sample() and RDD.takeSample()
val exactSampleSize = (numExamples * fraction).toInt
println(s"Sampling RDD using fraction $fraction. Expected sample size = $exactSampleSize.")
val sampledRDD = normalRDD.sample(withReplacement = true, fraction = fraction)
println(s" RDD.sample(): sample has ${sampledRDD.count()} examples")
val sampledArray = normalRDD.takeSample(withReplacement = true, num = exactSampleSize)
println(s" RDD.takeSample(): sample has ${sampledArray.size} examples")

println()

// Example: RDD.sampleByKey()
val examples = MLUtils.loadLibSVMFile(sc, params.input)
val sizeA = examples.count()
println(s"Loaded data with $sizeA examples from file: ${params.input}")
val keyedRDD = examples.map { lp => (lp.label.toInt, lp.features) }
println(s" Keyed data using label (Int) as key ==> Orig")
// Count examples per label in original data.
val keyCountsA = keyedRDD.countByKey()
// Subsample, and count examples per label in sampled data.
val fractions = keyCountsA.keys.map((_, fraction)).toMap
val sampledByKeyRDD =
keyedRDD.sampleByKey(withReplacement = true, fractions = fractions, exact = true)
val keyCountsB = sampledByKeyRDD.countByKey()
val sizeB = keyCountsB.values.sum
println(s" Sampled $sizeB examples using exact stratified sampling (by label). ==> Sample")
println(s" \tFractions of examples with key")
println(s"Key\tOrig\tSample")
keyCountsA.keys.toSeq.sorted.foreach { key =>
println(s"$key\t${keyCountsA(key) / sizeA.toDouble}\t${keyCountsB(key) / sizeB.toDouble}")
}

sc.stop()
}
}
Loading