Skip to content
Closed
659 changes: 10 additions & 649 deletions docs/ml-guide.md

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add package here:

package org.apache.spark.examples.ml;

import java.util.Arrays;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use example on and off to imports, too. E.g.

// $example on$
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.param.ParamMap;
...
// $example off$

import java.util.List;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

delete this import since Java List is not used in the example.


import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

public class JavaEstimatorTransformerParamExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaEstimatorTransformerParamExample");
SparkContext sc = new SparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);

// $example on$
// Prepare training data.
// We use LabeledPoint, which is a JavaBean. Spark SQL can convert RDDs of
// JavaBeans
// into DataFrames, where it uses the bean metadata to infer the schema.
DataFrame training = sqlContext.createDataFrame(Arrays.asList(
new LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)), new LabeledPoint(
0.0, Vectors.dense(2.0, 1.0, -1.0)),
new LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)), new LabeledPoint(
1.0, Vectors.dense(0.0, 1.2, -0.5))), LabeledPoint.class);

// Create a LogisticRegression instance. This instance is an Estimator.
LogisticRegression lr = new LogisticRegression();
// Print out the parameters, documentation, and any default values.
System.out.println("LogisticRegression parameters:\n" + lr.explainParams()
+ "\n");

// We may set parameters using setter methods.
lr.setMaxIter(10).setRegParam(0.01);

// Learn a LogisticRegression model. This uses the parameters stored in lr.
LogisticRegressionModel model1 = lr.fit(training);
// Since model1 is a Model (i.e., a Transformer produced by an Estimator),
// we can view the parameters it used during fit().
// This prints the parameter (name: value) pairs, where names are unique IDs
// for this
// LogisticRegression instance.
System.out.println("Model 1 was fit using parameters: "
+ model1.parent().extractParamMap());

// We may alternatively specify parameters using a ParamMap.
ParamMap paramMap = new ParamMap().put(lr.maxIter().w(20)) // Specify 1 Param.
.put(lr.maxIter(), 30) // This overwrites the original maxIter.
.put(lr.regParam().w(0.1), lr.threshold().w(0.55)); // Specify multiple Params.

// One can also combine ParamMaps.
ParamMap paramMap2 = new ParamMap().put(lr.probabilityCol().w(
"myProbability")); // Change output column name
ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);

// Now learn a new model using the paramMapCombined parameters.
// paramMapCombined overrides all parameters set earlier via lr.set*
// methods.
LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
System.out.println("Model 2 was fit using parameters: "
+ model2.parent().extractParamMap());

// Prepare test documents.
DataFrame test = sqlContext.createDataFrame(Arrays.asList(new LabeledPoint(
1.0, Vectors.dense(-1.0, 1.5, 1.3)),
new LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)), new LabeledPoint(
1.0, Vectors.dense(0.0, 2.2, -1.5))), LabeledPoint.class);

// Make predictions on test documents using the Transformer.transform()
// method.
// LogisticRegression.transform will only use the 'features' column.
// Note that model2.transform() outputs a 'myProbability' column instead of
// the usual
// 'probability' column since we renamed the lr.probabilityCol parameter
// previously.
DataFrame results = model2.transform(test);
for (Row r : results.select("features", "label", "myProbability",
"prediction").collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob="
+ r.get(2) + ", prediction=" + r.get(3));
}
// $example off$

sc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

import java.util.Arrays;
import java.util.List;
import java.io.Serializable;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.tuning.CrossValidator;
import org.apache.spark.ml.tuning.CrossValidatorModel;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;

// Labeled and unlabeled instance types.
// Spark SQL can infer schema from Java Beans.
class Document1 implements Serializable {
private long id;
private String text;

public Document1(long id, String text) {
this.id = id;
this.text = text;
}

public long getId() {
return this.id;
}

public void setId(long id) {
this.id = id;
}

public String getText() {
return this.text;
}

public void setText(String text) {
this.text = text;
}
}

class LabeledDocument1 extends Document1 implements Serializable {
private double label;

public LabeledDocument1(long id, String text, double label) {
super(id, text);
this.label = label;
}

public double getLabel() {
return this.label;
}

public void setLabel(double label) {
this.label = label;
}
}

public class JavaModelSelectionViaCrossValidationExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaModelSelectionViaCrossValidationExample");
SparkContext sc = new SparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);

// $example on$
// Prepare training documents, which are labeled.
DataFrame training = sqlContext.createDataFrame(Arrays.asList(
new LabeledDocument1(0L, "a b c d e spark", 1.0), new LabeledDocument1(
1L, "b d", 0.0), new LabeledDocument1(2L, "spark f g h", 1.0),
new LabeledDocument1(3L, "hadoop mapreduce", 0.0), new LabeledDocument1(
4L, "b spark who", 1.0), new LabeledDocument1(5L, "g d a y", 0.0),
new LabeledDocument1(6L, "spark fly", 1.0), new LabeledDocument1(7L,
"was mapreduce", 0.0), new LabeledDocument1(8L, "e spark program",
1.0), new LabeledDocument1(9L, "a e c l", 0.0), new LabeledDocument1(
10L, "spark compile", 1.0), new LabeledDocument1(11L,
"hadoop software", 0.0)), LabeledDocument1.class);

// Configure an ML pipeline, which consists of three stages: tokenizer,
// hashingTF, and lr.
Tokenizer tokenizer = new Tokenizer().setInputCol("text").setOutputCol(
"words");
HashingTF hashingTF = new HashingTF().setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol()).setOutputCol("features");
LogisticRegression lr = new LogisticRegression().setMaxIter(10)
.setRegParam(0.01);
Pipeline pipeline = new Pipeline().setStages(new PipelineStage[] {
tokenizer, hashingTF, lr });

// We use a ParamGridBuilder to construct a grid of parameters to search
// over.
// With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
// this grid will have 3 x 2 = 6 parameter settings for CrossValidator to
// choose from.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(hashingTF.numFeatures(), new int[] { 10, 100, 1000 })
.addGrid(lr.regParam(), new double[] { 0.1, 0.01 }).build();

// We now treat the Pipeline as an Estimator, wrapping it in a
// CrossValidator instance.
// This will allow us to jointly choose parameters for all Pipeline stages.
// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and
// an Evaluator.
// Note that the evaluator here is a BinaryClassificationEvaluator and its
// default metric
// is areaUnderROC.
CrossValidator cv = new CrossValidator().setEstimator(pipeline)
.setEvaluator(new BinaryClassificationEvaluator())
.setEstimatorParamMaps(paramGrid).setNumFolds(2); // Use 3+ in practice

// Run cross-validation, and choose the best set of parameters.
CrossValidatorModel cvModel = cv.fit(training);

// Prepare test documents, which are unlabeled.
DataFrame test = sqlContext.createDataFrame(Arrays.asList(new Document1(4L,
"spark i j k"), new Document1(5L, "l m n"), new Document1(6L,
"mapreduce spark"), new Document1(7L, "apache hadoop")), Document1.class);

// Make predictions on test documents. cvModel uses the best model found
// (lrModel).
DataFrame predictions = cvModel.transform(test);
for (Row r : predictions.select("id", "text", "probability", "prediction")
.collect()) {
System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob="
+ r.get(2) + ", prediction=" + r.get(3));
}
// $example off$

sc.stop();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.param.ParamMap;
//$example on$
import org.apache.spark.ml.regression.LinearRegression;
//$example off$
import org.apache.spark.ml.tuning.*;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;

public class JavaModelSelectionViaTrainValidationSplitExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JavaModelSelectionViaTrainValidationSplitExample");
SparkContext sc = new SparkContext(conf);
SQLContext jsql = new SQLContext(sc);

// $example on$
DataFrame data = jsql.read().format("libsvm")
.load("data/mllib/sample_libsvm_data.txt");

// Prepare training and test data.
DataFrame[] splits = data.randomSplit(new double[] { 0.9, 0.1 }, 12345);
DataFrame training = splits[0];
DataFrame test = splits[1];

LinearRegression lr = new LinearRegression();

// We use a ParamGridBuilder to construct a grid of parameters to search
// over.
// TrainValidationSplit will try all combinations of values and determine
// best model using
// the evaluator.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam(), new double[] { 0.1, 0.01 })
.addGrid(lr.fitIntercept())
.addGrid(lr.elasticNetParam(), new double[] { 0.0, 0.5, 1.0 }).build();

// In this case the estimator is simply the linear regression.
// A TrainValidationSplit requires an Estimator, a set of Estimator
// ParamMaps, and an Evaluator.
TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
.setEstimator(lr).setEvaluator(new RegressionEvaluator())
// 80% for training and the remaining 20% for validation
.setEstimatorParamMaps(paramGrid).setTrainRatio(0.8);

// Run train validation split, and choose the best set of parameters.
TrainValidationSplitModel model = trainValidationSplit.fit(training);

// Make predictions on test data. model is the model with combination of
// parameters
// that performed best.
model.transform(test).select("features", "label", "prediction").show();
// $example off$

sc.stop();
}
}
Loading