Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.sql.catalyst.analysis

import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.Literal._
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.types._


// scalastyle:off
/**
* Calculates and propagates precision for fixed-precision decimals. Hive has a number of
* rules for this based on the SQL standard and MS SQL:
* https://cwiki.apache.org/confluence/download/attachments/27362075/Hive_Decimal_Precision_Scale_Support.pdf
* https://msdn.microsoft.com/en-us/library/ms190476.aspx
*
* In particular, if we have expressions e1 and e2 with precision/scale p1/s2 and p2/s2
* respectively, then the following operations have the following precision / scale:
*
* Operation Result Precision Result Scale
* ------------------------------------------------------------------------
* e1 + e2 max(s1, s2) + max(p1-s1, p2-s2) + 1 max(s1, s2)
* e1 - e2 max(s1, s2) + max(p1-s1, p2-s2) + 1 max(s1, s2)
* e1 * e2 p1 + p2 + 1 s1 + s2
* e1 / e2 p1 - s1 + s2 + max(6, s1 + p2 + 1) max(6, s1 + p2 + 1)
* e1 % e2 min(p1-s1, p2-s2) + max(s1, s2) max(s1, s2)
* e1 union e2 max(s1, s2) + max(p1-s1, p2-s2) max(s1, s2)
* sum(e1) p1 + 10 s1
* avg(e1) p1 + 4 s1 + 4
*
* To implement the rules for fixed-precision types, we introduce casts to turn them to unlimited
* precision, do the math on unlimited-precision numbers, then introduce casts back to the
* required fixed precision. This allows us to do all rounding and overflow handling in the
* cast-to-fixed-precision operator.
*
* In addition, when mixing non-decimal types with decimals, we use the following rules:
* - BYTE gets turned into DECIMAL(3, 0)
* - SHORT gets turned into DECIMAL(5, 0)
* - INT gets turned into DECIMAL(10, 0)
* - LONG gets turned into DECIMAL(20, 0)
* - FLOAT and DOUBLE cause fixed-length decimals to turn into DOUBLE
*/
// scalastyle:on
object DecimalPrecision extends Rule[LogicalPlan] {
import scala.math.{max, min}

private def isFloat(t: DataType): Boolean = t == FloatType || t == DoubleType

// Returns the wider decimal type that's wider than both of them
def widerDecimalType(d1: DecimalType, d2: DecimalType): DecimalType = {
widerDecimalType(d1.precision, d1.scale, d2.precision, d2.scale)
}
// max(s1, s2) + max(p1-s1, p2-s2), max(s1, s2)
def widerDecimalType(p1: Int, s1: Int, p2: Int, s2: Int): DecimalType = {
val scale = max(s1, s2)
val range = max(p1 - s1, p2 - s2)
DecimalType.bounded(range + scale, scale)
}

private def promotePrecision(e: Expression, dataType: DataType): Expression = {
PromotePrecision(Cast(e, dataType))
}

def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
// fix decimal precision for expressions
case q => q.transformExpressions(
decimalAndDecimal.orElse(integralAndDecimalLiteral).orElse(nondecimalAndDecimal))
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

i broke the previous monolithic decimal precision rule into 2 parts, and then added integralAndDecimalLiteral

}

/** Decimal precision promotion for +, -, *, /, %, pmod, and binary comparison. */
private val decimalAndDecimal: PartialFunction[Expression, Expression] = {
// Skip nodes whose children have not been resolved yet
case e if !e.childrenResolved => e

// Skip nodes who is already promoted
case e: BinaryArithmetic if e.left.isInstanceOf[PromotePrecision] => e

case Add(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
val dt = DecimalType.bounded(max(s1, s2) + max(p1 - s1, p2 - s2) + 1, max(s1, s2))
CheckOverflow(Add(promotePrecision(e1, dt), promotePrecision(e2, dt)), dt)

case Subtract(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
val dt = DecimalType.bounded(max(s1, s2) + max(p1 - s1, p2 - s2) + 1, max(s1, s2))
CheckOverflow(Subtract(promotePrecision(e1, dt), promotePrecision(e2, dt)), dt)

case Multiply(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
val resultType = DecimalType.bounded(p1 + p2 + 1, s1 + s2)
val widerType = widerDecimalType(p1, s1, p2, s2)
CheckOverflow(Multiply(promotePrecision(e1, widerType), promotePrecision(e2, widerType)),
resultType)

case Divide(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
var intDig = min(DecimalType.MAX_SCALE, p1 - s1 + s2)
var decDig = min(DecimalType.MAX_SCALE, max(6, s1 + p2 + 1))
val diff = (intDig + decDig) - DecimalType.MAX_SCALE
if (diff > 0) {
decDig -= diff / 2 + 1
intDig = DecimalType.MAX_SCALE - decDig
}
val resultType = DecimalType.bounded(intDig + decDig, decDig)
val widerType = widerDecimalType(p1, s1, p2, s2)
CheckOverflow(Divide(promotePrecision(e1, widerType), promotePrecision(e2, widerType)),
resultType)

case Remainder(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
val resultType = DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2))
// resultType may have lower precision, so we cast them into wider type first.
val widerType = widerDecimalType(p1, s1, p2, s2)
CheckOverflow(Remainder(promotePrecision(e1, widerType), promotePrecision(e2, widerType)),
resultType)

case Pmod(e1 @ DecimalType.Expression(p1, s1), e2 @ DecimalType.Expression(p2, s2)) =>
val resultType = DecimalType.bounded(min(p1 - s1, p2 - s2) + max(s1, s2), max(s1, s2))
// resultType may have lower precision, so we cast them into wider type first.
val widerType = widerDecimalType(p1, s1, p2, s2)
CheckOverflow(Pmod(promotePrecision(e1, widerType), promotePrecision(e2, widerType)),
resultType)

case b @ BinaryComparison(e1 @ DecimalType.Expression(p1, s1),
e2 @ DecimalType.Expression(p2, s2)) if p1 != p2 || s1 != s2 =>
val resultType = widerDecimalType(p1, s1, p2, s2)
b.makeCopy(Array(Cast(e1, resultType), Cast(e2, resultType)))

// TODO: MaxOf, MinOf, etc might want other rules
// SUM and AVERAGE are handled by the implementations of those expressions
}

/**
* Strength reduction for comparing integral expressions with decimal literals.
* 1. int_col > decimal_literal => int_col > floor(decimal_literal)
* 2. int_col >= decimal_literal => int_col >= ceil(decimal_literal)
* 3. int_col < decimal_literal => int_col < ceil(decimal_literal)
* 4. int_col <= decimal_literal => int_col <= floor(decimal_literal)
* 5. decimal_literal > int_col => ceil(decimal_literal) > int_col
* 6. decimal_literal >= int_col => floor(decimal_literal) >= int_col
* 7. decimal_literal < int_col => floor(decimal_literal) < int_col
* 8. decimal_literal <= int_col => ceil(decimal_literal) <= int_col
*
* Note that technically this is an "optimization" and should go into the optimizer. However,
* by the time the optimizer runs, these comparison expressions would be pretty hard to pattern
* match because there are multuple (at least 2) levels of casts involved.
*
* There are a lot more possible rules we can implement, but we don't do them
* because we are not sure how common they are.
*/
private val integralAndDecimalLiteral: PartialFunction[Expression, Expression] = {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is the only function in this file that is new. everything else was simply copied over from the existing DeicmalPrecision.


case GreaterThan(i @ IntegralType(), DecimalLiteral(value)) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
TrueLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
FalseLiteral
} else {
GreaterThan(i, Literal(value.floor.toLong))
}

case GreaterThanOrEqual(i @ IntegralType(), DecimalLiteral(value)) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
TrueLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
FalseLiteral
} else {
GreaterThanOrEqual(i, Literal(value.ceil.toLong))
}

case LessThan(i @ IntegralType(), DecimalLiteral(value)) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
FalseLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
TrueLiteral
} else {
LessThan(i, Literal(value.ceil.toLong))
}

case LessThanOrEqual(i @ IntegralType(), DecimalLiteral(value)) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
FalseLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
TrueLiteral
} else {
LessThanOrEqual(i, Literal(value.floor.toLong))
}

case GreaterThan(DecimalLiteral(value), i @ IntegralType()) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
FalseLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
TrueLiteral
} else {
GreaterThan(Literal(value.ceil.toLong), i)
}

case GreaterThanOrEqual(DecimalLiteral(value), i @ IntegralType()) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
FalseLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
TrueLiteral
} else {
GreaterThanOrEqual(Literal(value.floor.toLong), i)
}

case LessThan(DecimalLiteral(value), i @ IntegralType()) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
TrueLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
FalseLiteral
} else {
LessThan(Literal(value.floor.toLong), i)
}

case LessThanOrEqual(DecimalLiteral(value), i @ IntegralType()) =>
if (DecimalLiteral.smallerThanSmallestLong(value)) {
TrueLiteral
} else if (DecimalLiteral.largerThanLargestLong(value)) {
FalseLiteral
} else {
LessThanOrEqual(Literal(value.ceil.toLong), i)
}
}

/**
* Type coercion for BinaryOperator in which one side is a non-decimal numeric, and the other
* side is a decimal.
*/
private val nondecimalAndDecimal: PartialFunction[Expression, Expression] = {
// Promote integers inside a binary expression with fixed-precision decimals to decimals,
// and fixed-precision decimals in an expression with floats / doubles to doubles
case b @ BinaryOperator(left, right) if left.dataType != right.dataType =>
(left.dataType, right.dataType) match {
case (t: IntegralType, DecimalType.Fixed(p, s)) =>
b.makeCopy(Array(Cast(left, DecimalType.forType(t)), right))
case (DecimalType.Fixed(p, s), t: IntegralType) =>
b.makeCopy(Array(left, Cast(right, DecimalType.forType(t))))
case (t, DecimalType.Fixed(p, s)) if isFloat(t) =>
b.makeCopy(Array(left, Cast(right, DoubleType)))
case (DecimalType.Fixed(p, s), t) if isFloat(t) =>
b.makeCopy(Array(Cast(left, DoubleType), right))
case _ =>
b
}
}
}
Loading