Skip to content
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 136 additions & 3 deletions datafusion/core/tests/user_defined/user_defined_scalar_functions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,13 @@ use arrow_schema::{DataType, Field, Schema};
use datafusion::prelude::*;
use datafusion::{execution::registry::FunctionRegistry, test_util};
use datafusion_common::cast::as_float64_array;
use datafusion_common::{assert_batches_eq, cast::as_int32_array, Result, ScalarValue};
use datafusion_common::{assert_batches_eq, assert_batches_sorted_eq, cast::as_int32_array, not_impl_err, plan_err, DataFusionError, Result, ScalarValue, ExprSchema};
use datafusion_expr::{
create_udaf, create_udf, Accumulator, ColumnarValue, LogicalPlanBuilder, ScalarUDF,
ScalarUDFImpl, Signature, Volatility,
create_udaf, create_udf, Accumulator, ColumnarValue, ExprSchemable,
LogicalPlanBuilder, ScalarUDF, ScalarUDFImpl, Signature, Volatility,
};
use rand::{thread_rng, Rng};
use std::any::Any;
use std::iter;
use std::sync::Arc;

Expand Down Expand Up @@ -494,6 +495,127 @@ async fn test_user_defined_functions_zero_argument() -> Result<()> {
Ok(())
}

#[derive(Debug)]
struct TakeUDF {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here is an example of the feature working

signature: Signature,
}

impl TakeUDF {
fn new() -> Self {
Self {
signature: Signature::any(3, Volatility::Immutable),
}
}
}

/// Implement a ScalarUDFImpl whose return type is a function of the input values
impl ScalarUDFImpl for TakeUDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"take"
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
not_impl_err!("Not called because the return_type_from_exprs is implemented")
}

/// Thus function returns the type of the first or second argument based on
/// the third argument:
///
/// 1. If the third argument is '0', return the type of the first argument
/// 2. If the third argument is '1', return the type of the second argument
fn return_type_from_exprs(
&self,
arg_exprs: &[Expr],
schema: &dyn ExprSchema,
) -> Result<DataType> {
if arg_exprs.len() != 3 {
return plan_err!("Expected 3 arguments, got {}.", arg_exprs.len());
}

let take_idx = if let Some(Expr::Literal(ScalarValue::Int64(Some(idx)))) =
arg_exprs.get(2)
{
if *idx == 0 || *idx == 1 {
*idx as usize
} else {
return plan_err!("The third argument must be 0 or 1, got: {idx}");
}
} else {
return plan_err!(
"The third argument must be a literal of type int64, but got {:?}",
arg_exprs.get(2)
);
};

arg_exprs.get(take_idx).unwrap().get_type(schema)
}

// The actual implementation rethr
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
let take_idx = match &args[2] {
ColumnarValue::Scalar(ScalarValue::Int64(Some(v))) if v < &2 => *v as usize,
_ => unreachable!(),
};
match &args[take_idx] {
ColumnarValue::Array(array) => Ok(ColumnarValue::Array(array.clone())),
ColumnarValue::Scalar(_) => unimplemented!(),
}
}
}

#[tokio::test]
async fn verify_udf_return_type() -> Result<()> {
// Create a new ScalarUDF from the implementation
let take = ScalarUDF::from(TakeUDF::new());

// SELECT
// take(smallint_col, double_col, 0) as take0,
// take(smallint_col, double_col, 1) as take1
// FROM alltypes_plain;
let exprs = vec![
take.call(vec![col("smallint_col"), col("double_col"), lit(0_i64)])
.alias("take0"),
take.call(vec![col("smallint_col"), col("double_col"), lit(1_i64)])
.alias("take1"),
];

let ctx = SessionContext::new();
register_alltypes_parquet(&ctx).await?;

let df = ctx.table("alltypes_plain").await?.select(exprs)?;

let schema = df.schema();

// The output schema should be
// * type of column smallint_col (float64)
// * type of column double_col (float32)
assert_eq!(schema.field(0).data_type(), &DataType::Int32);
assert_eq!(schema.field(1).data_type(), &DataType::Float64);

let expected = [
"+-------+-------+",
"| take0 | take1 |",
"+-------+-------+",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 0 | 0.0 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"| 1 | 10.1 |",
"+-------+-------+",
];
assert_batches_sorted_eq!(&expected, &df.collect().await?);

Ok(())
}

fn create_udf_context() -> SessionContext {
let ctx = SessionContext::new();
// register a custom UDF
Expand Down Expand Up @@ -531,6 +653,17 @@ async fn register_aggregate_csv(ctx: &SessionContext) -> Result<()> {
Ok(())
}

async fn register_alltypes_parquet(ctx: &SessionContext) -> Result<()> {
let testdata = datafusion::test_util::parquet_test_data();
ctx.register_parquet(
"alltypes_plain",
&format!("{testdata}/alltypes_plain.parquet"),
ParquetReadOptions::default(),
)
.await?;
Ok(())
}

/// Execute SQL and return results as a RecordBatch
async fn plan_and_collect(ctx: &SessionContext, sql: &str) -> Result<Vec<RecordBatch>> {
ctx.sql(sql).await?.collect().await
Expand Down
30 changes: 15 additions & 15 deletions datafusion/expr/src/expr_schema.rs
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ use crate::{utils, LogicalPlan, Projection, Subquery};
use arrow::compute::can_cast_types;
use arrow::datatypes::{DataType, Field};
use datafusion_common::{
internal_err, plan_datafusion_err, plan_err, Column, DFField, DFSchema,
internal_err, plan_datafusion_err, plan_err, Column, DFField,
DataFusionError, ExprSchema, Result,
};
use std::collections::HashMap;
Expand All @@ -37,19 +37,19 @@ use std::sync::Arc;
/// trait to allow expr to typable with respect to a schema
pub trait ExprSchemable {
/// given a schema, return the type of the expr
fn get_type<S: ExprSchema>(&self, schema: &S) -> Result<DataType>;
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType>;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I had to change the traits to use dyn dispatch rather than generics so that the UDF could use the same object (and e.g. not have to create its own copy of these methods for Expr)

I expect this to have 0 performance impact, but I will run the planning benchmarks to be sure if this acceptable

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I ran

cargo bench --bench sql_planner

And the results looked good ( within the noise threshold / reported 1% slower which I don't attribute to this change)


/// given a schema, return the nullability of the expr
fn nullable<S: ExprSchema>(&self, input_schema: &S) -> Result<bool>;
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool>;

/// given a schema, return the expr's optional metadata
fn metadata<S: ExprSchema>(&self, schema: &S) -> Result<HashMap<String, String>>;
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>>;

/// convert to a field with respect to a schema
fn to_field(&self, input_schema: &DFSchema) -> Result<DFField>;
fn to_field(&self, input_schema: &dyn ExprSchema) -> Result<DFField>;

/// cast to a type with respect to a schema
fn cast_to<S: ExprSchema>(self, cast_to_type: &DataType, schema: &S) -> Result<Expr>;
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr>;
}

impl ExprSchemable for Expr {
Expand Down Expand Up @@ -90,7 +90,7 @@ impl ExprSchemable for Expr {
/// expression refers to a column that does not exist in the
/// schema, or when the expression is incorrectly typed
/// (e.g. `[utf8] + [bool]`).
fn get_type<S: ExprSchema>(&self, schema: &S) -> Result<DataType> {
fn get_type(&self, schema: &dyn ExprSchema) -> Result<DataType> {
match self {
Expr::Alias(Alias { expr, name, .. }) => match &**expr {
Expr::Placeholder(Placeholder { data_type, .. }) => match &data_type {
Expand Down Expand Up @@ -136,7 +136,7 @@ impl ExprSchemable for Expr {
fun.return_type(&arg_data_types)
}
ScalarFunctionDefinition::UDF(fun) => {
Ok(fun.return_type(&arg_data_types)?)
Ok(fun.return_type_from_exprs(args, schema)?)
}
ScalarFunctionDefinition::Name(_) => {
internal_err!("Function `Expr` with name should be resolved.")
Expand Down Expand Up @@ -220,7 +220,7 @@ impl ExprSchemable for Expr {
/// This function errors when it is not possible to compute its
/// nullability. This happens when the expression refers to a
/// column that does not exist in the schema.
fn nullable<S: ExprSchema>(&self, input_schema: &S) -> Result<bool> {
fn nullable(&self, input_schema: &dyn ExprSchema) -> Result<bool> {
match self {
Expr::Alias(Alias { expr, .. })
| Expr::Not(expr)
Expand Down Expand Up @@ -327,7 +327,7 @@ impl ExprSchemable for Expr {
}
}

fn metadata<S: ExprSchema>(&self, schema: &S) -> Result<HashMap<String, String>> {
fn metadata(&self, schema: &dyn ExprSchema) -> Result<HashMap<String, String>> {
match self {
Expr::Column(c) => Ok(schema.metadata(c)?.clone()),
Expr::Alias(Alias { expr, .. }) => expr.metadata(schema),
Expand All @@ -339,7 +339,7 @@ impl ExprSchemable for Expr {
///
/// So for example, a projected expression `col(c1) + col(c2)` is
/// placed in an output field **named** col("c1 + c2")
fn to_field(&self, input_schema: &DFSchema) -> Result<DFField> {
fn to_field(&self, input_schema: &dyn ExprSchema) -> Result<DFField> {
match self {
Expr::Column(c) => Ok(DFField::new(
c.relation.clone(),
Expand Down Expand Up @@ -370,7 +370,7 @@ impl ExprSchemable for Expr {
///
/// This function errors when it is impossible to cast the
/// expression to the target [arrow::datatypes::DataType].
fn cast_to<S: ExprSchema>(self, cast_to_type: &DataType, schema: &S) -> Result<Expr> {
fn cast_to(self, cast_to_type: &DataType, schema: &dyn ExprSchema) -> Result<Expr> {
let this_type = self.get_type(schema)?;
if this_type == *cast_to_type {
return Ok(self);
Expand All @@ -394,10 +394,10 @@ impl ExprSchemable for Expr {
}

/// return the schema [`Field`] for the type referenced by `get_indexed_field`
fn field_for_index<S: ExprSchema>(
fn field_for_index(
expr: &Expr,
field: &GetFieldAccess,
schema: &S,
schema: &dyn ExprSchema,
) -> Result<Field> {
let expr_dt = expr.get_type(schema)?;
match field {
Expand Down Expand Up @@ -457,7 +457,7 @@ mod tests {
use super::*;
use crate::{col, lit};
use arrow::datatypes::{DataType, Fields};
use datafusion_common::{Column, ScalarValue, TableReference};
use datafusion_common::{Column, DFSchema, ScalarValue, TableReference};

macro_rules! test_is_expr_nullable {
($EXPR_TYPE:ident) => {{
Expand Down
59 changes: 52 additions & 7 deletions datafusion/expr/src/udf.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,13 @@

//! [`ScalarUDF`]: Scalar User Defined Functions

use crate::ExprSchemable;
use crate::{
ColumnarValue, Expr, FuncMonotonicity, ReturnTypeFunction,
ScalarFunctionImplementation, Signature,
};
use arrow::datatypes::DataType;
use datafusion_common::Result;
use datafusion_common::{ExprSchema, Result};
use std::any::Any;
use std::fmt;
use std::fmt::Debug;
Expand Down Expand Up @@ -110,7 +111,7 @@ impl ScalarUDF {
///
/// If you implement [`ScalarUDFImpl`] directly you should return aliases directly.
pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
Self::new_from_impl(AliasedScalarUDFImpl::new(self, aliases))
Self::new_from_impl(AliasedScalarUDFImpl::new(self.inner.clone(), aliases))
}

/// Returns a [`Expr`] logical expression to call this UDF with specified
Expand Down Expand Up @@ -146,10 +147,17 @@ impl ScalarUDF {
}

/// The datatype this function returns given the input argument input types.
/// This function is used when the input arguments are [`Expr`]s.
///
/// See [`ScalarUDFImpl::return_type`] for more details.
pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
self.inner.return_type(args)
///
/// See [`ScalarUDFImpl::return_type_from_exprs`] for more details.
pub fn return_type_from_exprs(
&self,
args: &[Expr],
schema: &dyn ExprSchema,
) -> Result<DataType> {
// If the implementation provides a return_type_from_exprs, use it
self.inner.return_type_from_exprs(args, schema)
}

/// Invoke the function on `args`, returning the appropriate result.
Expand Down Expand Up @@ -249,6 +257,43 @@ pub trait ScalarUDFImpl: Debug + Send + Sync {
/// the arguments
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;

/// What [`DataType`] will be returned by this function, given the
/// arguments?
///
/// Note most UDFs should implement [`Self::return_type`] and not this
/// function. The output type for most functions only depends on the types
/// of their inputs (e.g. `sqrt(f32)` is always `f32`).
///
/// By default, this function calls [`Self::return_type`] with the
/// types of each argument.
///
/// This method can be overridden for functions that return different
/// *types* based on the *values* of their arguments.
///
/// For example, the following two function calls get the same argument
/// types (something and a `Utf8` string) but return different types based
/// on the value of the second argument:
///
/// * `arrow_cast(x, 'Int16')` --> `Int16`
/// * `arrow_cast(x, 'Float32')` --> `Float32`
///
/// # Notes:
///
/// This function must consistently return the same type for the same
/// logical input even if the input is simplified (e.g. it must return the same
/// value for `('foo' | 'bar')` as it does for ('foobar').
Comment on lines +268 to +292
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe add some documentation about what would happen if a user tries to implement both return_type() and return_type_from_exprs()? (Which takes priority, etc.)

And what the suggested implementation for return_type() be if they choose to implement return_type_from_exprs() instead

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Excellent idea - added in 653577f

fn return_type_from_exprs(
Copy link
Contributor

@universalmind303 universalmind303 Feb 9, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Since we need to use the ExprSchema here, but there's issues going from <S: ExprSchema> to &dyn ExprSchema inside the trait, what if we moved up the default implementation out of the trait and into ScalarUDF?

we could change the trait impl to something like this

pub trait ScalarUDFImpl: Debug + Send + Sync {
    /// What [`DataType`] will be returned by this function, given the types of
    /// the expr arguments
    fn return_type_from_exprs(
        &self,
        arg_exprs: &[Expr],
        schema: &dyn ExprSchema,
    ) -> Option<Result<DataType>> {
        // The default implementation returns None
        // so that people don't have to implement `return_type_from_exprs` if they dont want to
        None
    }
}

then change the ScalarUDF impl to this

impl ScalarUDF
    /// The datatype this function returns given the input argument input types.
    /// This function is used when the input arguments are [`Expr`]s.
    /// See [`ScalarUDFImpl::return_type_from_exprs`] for more details.
    pub fn return_type_from_exprs<S: ExprSchema>(
        &self,
        args: &[Expr],
        schema: &S,
    ) -> Result<DataType> {
        // If the implementation provides a return_type_from_exprs, use it
        if let Some(return_type) = self.inner.return_type_from_exprs(args, schema) {
            return_type
        // Otherwise, use the return_type function
        } else {
            let arg_types = args
                .iter()
                .map(|arg| arg.get_type(schema))
                .collect::<Result<Vec<_>>>()?;
            self.return_type(&arg_types)
        }
    }
}

this way we don't need to constrain the ExprSchemable functions to ?Sized, and we can update the get_type function to use the return_type_from_exprs without any compile time errors.

ScalarFunctionDefinition::UDF(fun) => {
    Ok(fun.return_type_from_exprs(&args, schema)?)
}

and it still makes return_type_from_exprs an opt-in method.


It does make it very slightly less ergonomic as end users now need to wrap their body in an Option, but overall i think it's a decent compromise.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This works well on my side. Thanks!

Another question for me is, how can user implement return_type_from_exprs when using schema. For example, arg_exprs.get(take_idx).unwrap().get_type(schema) will lead an error

the size for values of type dyn ExprSchema cannot be known at compilation time
the trait Sized is not implemented for dyn ExprSchema

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hmm yeah @yyy1000 you still run into the same error then.

I'm wondering if it'd be easiest to just change the type signature on ExprSchemable to be generic over the trait instead of the functions.

pub trait ExprSchemable<S: ExprSchema> {
    /// given a schema, return the type of the expr
    fn get_type(&self, schema: &S) -> Result<DataType>;

    /// given a schema, return the nullability of the expr
    fn nullable(&self, input_schema: &S) -> Result<bool>;

    /// given a schema, return the expr's optional metadata
    fn metadata(&self, schema: &S) -> Result<HashMap<String, String>>;

    /// convert to a field with respect to a schema
    fn to_field(&self, input_schema: &DFSchema) -> Result<DFField>;

    /// cast to a type with respect to a schema
    fn cast_to(self, cast_to_type: &DataType, schema: &S) -> Result<Expr>;
}

impl ExprSchemable<DFSchema> for Expr {
//... 
}

then the trait can just go back to the original implementation you had using &DFSchema

    fn return_type_from_exprs(
        &self,
        arg_exprs: &[Expr],
        schema: &DFSchema,
    ) -> Result<DataType> {
        let arg_types = arg_exprs
            .iter()
            .map(|e| e.get_type(schema))
            .collect::<Result<Vec<_>>>()?;
        self.return_type(&arg_types)
    }

I tried this locally and was able to get things to compile locally, and was able to implement a udf using the trait.

It does make it a little less flexible as it's expecting a DFSchema, but i think thats ok?

I think the only other approach would be to make ScalarUDFImpl dynamic over <S: ExprSchema>, but I feel like that's much less ideal than just using a concrete type.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for your help! @universalmind303
It looks good and I think I can try it to see. :)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Update is I changed the signature to take &dyn ExprSchema which seems to have worked just fine

&self,
args: &[Expr],
schema: &dyn ExprSchema,
) -> Result<DataType> {
let arg_types = args
.iter()
.map(|arg| arg.get_type(schema))
.collect::<Result<Vec<_>>>()?;
self.return_type(&arg_types)
}

/// Invoke the function on `args`, returning the appropriate result
///
/// The function will be invoked passed with the slice of [`ColumnarValue`]
Expand Down Expand Up @@ -290,13 +335,13 @@ pub trait ScalarUDFImpl: Debug + Send + Sync {
/// implement [`ScalarUDFImpl`], which supports aliases, directly if possible.
#[derive(Debug)]
struct AliasedScalarUDFImpl {
inner: ScalarUDF,
inner: Arc<dyn ScalarUDFImpl>,
aliases: Vec<String>,
}

impl AliasedScalarUDFImpl {
pub fn new(
inner: ScalarUDF,
inner: Arc<dyn ScalarUDFImpl>,
new_aliases: impl IntoIterator<Item = &'static str>,
) -> Self {
let mut aliases = inner.aliases().to_vec();
Expand Down
Loading