Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/eval-model.yml
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,13 @@ jobs:
run: pip install ".[dev]" -f https://download.pytorch.org/whl/cpu/torch_stable.html

- name: Run Eval Script for Chronos-2
run: python scripts/evaluation/evaluate.py chronos-2 ci/evaluate/backtest_config.yaml $CHRONOS_2_RESULTS_CSV --model-id=s3://autogluon/chronos-2 --device=cpu --torch-dtype=float32
run: python scripts/evaluation/evaluate.py chronos-2 ci/evaluate/backtest_config.yaml $CHRONOS_2_RESULTS_CSV --model-id=amazon/chronos-2 --device=cpu --torch-dtype=float32

- name: Print Chronos-2 CSV
run: cat $CHRONOS_2_RESULTS_CSV

- name: Run Eval Script for Chronos-Bolt
run: python scripts/evaluation/evaluate.py chronos-bolt ci/evaluate/backtest_config.yaml $CHRONOS_BOLT_RESULTS_CSV --model-id=amazon/chronos-bolt-small --device=cpu --torch-dtype=float32

- name: Print Chronos-Bolt CSV
run: cat $CHRONOS_BOLT_RESULTS_CSV
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@


## 🚀 News
- **20 Oct 2025**: 🚀 [Chronos-2](https://arxiv.org/abs/2510.15821) released. It offers _zero-shot_ support for univariate, multivariate, and covariate-informed forecasting tasks. Chronos-2 achieves the best performance on fev-bench, GIFT-Eval and Chronos Benchmark II amongst pretrained models. Check out [this notebook](notebooks/chronos-2-quickstart.ipynb) to get started with Chronos-2.
- **20 Oct 2025**: 🚀 [Chronos-2](https://huggingface.co/amazon/chronos-2) released. It offers _zero-shot_ support for univariate, multivariate, and covariate-informed forecasting tasks. Chronos-2 achieves the best performance on fev-bench, GIFT-Eval and Chronos Benchmark II amongst pretrained models. Check out [this notebook](notebooks/chronos-2-quickstart.ipynb) to get started with Chronos-2.
- **14 Feb 2025**: 🚀 Chronos-Bolt is now available on Amazon SageMaker JumpStart! Check out the [tutorial notebook](notebooks/deploy-chronos-bolt-to-amazon-sagemaker.ipynb) to learn how to deploy Chronos endpoints for production use in 3 lines of code.
- **12 Dec 2024**: 📊 We released [`fev`](https://github.com/autogluon/fev), a lightweight package for benchmarking time series forecasting models based on the [Hugging Face `datasets`](https://huggingface.co/docs/datasets/en/index) library.
- **26 Nov 2024**: ⚡️ Chronos-Bolt models released [on HuggingFace](https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444). Chronos-Bolt models are more accurate (5% lower error), up to 250x faster and 20x more memory efficient than the original Chronos models of the same size!
Expand All @@ -39,7 +39,7 @@ This package provides an interface to the Chronos family of **pretrained time se

| Model ID | Parameters |
| ---------------------------------------------------------------------- | ---------- |
| [`s3://autogluon/chronos-2`](https://arxiv.org/abs/2510.15821) | 120M |
| [`amazon/chronos-2`](https://huggingface.co/amazon/chronos-2) | 120M |
| [`amazon/chronos-bolt-tiny`](https://huggingface.co/amazon/chronos-bolt-tiny) | 9M |
| [`amazon/chronos-bolt-mini`](https://huggingface.co/amazon/chronos-bolt-mini) | 21M |
| [`amazon/chronos-bolt-small`](https://huggingface.co/amazon/chronos-bolt-small) | 48M |
Expand All @@ -48,7 +48,7 @@ This package provides an interface to the Chronos family of **pretrained time se
| [`amazon/chronos-t5-mini`](https://huggingface.co/amazon/chronos-t5-mini) | 20M |
| [`amazon/chronos-t5-small`](https://huggingface.co/amazon/chronos-t5-small) | 46M |
| [`amazon/chronos-t5-base`](https://huggingface.co/amazon/chronos-t5-base) | 200M |
| [`amazon/chronos-t5-large`](https://huggingface.co/amazon/chronos-t5-large) | 710M |
| [`amazon/chronos-t5-large`](https://huggingface.co/amazon/chronos-t5-large) | 710M |

</div>

Expand All @@ -68,7 +68,7 @@ A minimal example showing how to perform forecasting using Chronos-2:
import pandas as pd # requires: pip install 'pandas[pyarrow]'
from chronos import Chronos2Pipeline

pipeline = Chronos2Pipeline.from_pretrained("s3://autogluon/chronos-2", device_map="cuda")
pipeline = Chronos2Pipeline.from_pretrained("amazon/chronos-2", device_map="cuda")

# Load historical target values and past values of covariates
context_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/train.parquet")
Expand Down
4 changes: 2 additions & 2 deletions notebooks/chronos-2-quickstart.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"id": "fcc7e496",
"metadata": {},
"outputs": [],
Expand All @@ -53,7 +53,7 @@
"\n",
"# Load the Chronos-2 pipeline\n",
"# GPU recommended for faster inference, but CPU is also supported\n",
"pipeline: Chronos2Pipeline = BaseChronosPipeline.from_pretrained(\"s3://autogluon/chronos-2/\", device_map=\"cuda\")"
"pipeline: Chronos2Pipeline = BaseChronosPipeline.from_pretrained(\"amazon/chronos-2\", device_map=\"cuda\")"
]
},
{
Expand Down
7 changes: 5 additions & 2 deletions test/test_chronos2.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,9 @@
import torch

from chronos import BaseChronosPipeline, Chronos2Pipeline
from chronos.chronos2.dataset import convert_df_input_to_list_of_dicts_input
from chronos.chronos2.config import Chronos2CoreConfig
from chronos.chronos2.dataset import convert_df_input_to_list_of_dicts_input
from chronos.chronos2.layers import MHA

from test.util import validate_tensor

DUMMY_MODEL_PATH = Path(__file__).parent / "dummy-chronos2-model"
Expand All @@ -35,6 +34,10 @@ def test_base_chronos2_pipeline_loads_from_s3():
BaseChronosPipeline.from_pretrained("s3://autogluon/chronos-2", device_map="cpu")


def test_base_chronos2_pipeline_loads_from_hf():
BaseChronosPipeline.from_pretrained("amazon/chronos-2", device_map="cpu")


@pytest.mark.parametrize(
"inputs, prediction_length, expected_output_shapes",
[
Expand Down