Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -521,3 +521,147 @@ private[streaming] class ConstantRateController(id: Int, estimator: RateEstimato
override def publish(rate: Long): Unit = ()
override def getLatestRate(): Long = rate
}

/**
* Temporarily added some samples for the CEP API's here.
* TODO: add test cases in streaming/src/test/scala/CepSuite.scala
*/

import org.apache.spark.streaming.dstream.WindowState

object PatternMatchByKey {

import org.apache.spark.streaming._
import org.apache.spark.Partitioner

def main(args: Array[String]) {
val brokers = args(0)
val topics = args(1)
val checkpointDir = args(2)


// Create context with 2 second batch interval
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("PatternMatchByKey")
val ssc = new StreamingContext(sparkConf, Seconds(6))
ssc.checkpoint(checkpointDir)

// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers,
"auto.offset.reset" -> "smallest")

case class Tick(symbol: String, price: Int, ts: Long)

// Read a stream of message from kafka
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)

// Get each message and put into a Tick object
val ticks = messages.map(_._2)
.map(_.split("[,:]")).map(p => {
Tick(p(1), p(3).trim.toInt, p(5).trim.toLong)
})

// put into a KV by compName and Timetamp
val kvTicks = ticks.map(t => (t.symbol, t))
kvTicks.cache()


// define rise, drop & deep predicates
def rise(in: Tick, ew: WindowState): Boolean = {
in.price > ew.first.asInstanceOf[Tick].price &&
in.price >= ew.prev.asInstanceOf[Tick].price
}
def drop(in: Tick, ew: WindowState): Boolean = {
in.price >= ew.first.asInstanceOf[Tick].price &&
in.price < ew.prev.asInstanceOf[Tick].price
}
def deep(in: Tick, ew: WindowState): Boolean = {
in.price < ew.first.asInstanceOf[Tick].price &&
in.price < ew.prev.asInstanceOf[Tick].price
}

// map the predicates to their state names
val predicateMapping: Map[String, (Tick, WindowState) => Boolean] =
Map("rise" -> rise, "drop" -> drop, "deep" -> deep)

val matches = kvTicks.patternMatchByKeyAndWindow("rise drop [rise ]+ deep".r,
predicateMapping, (in: Tick) => in.ts, Seconds(12), Seconds(6))

matches.print()

ssc.start()
ssc.awaitTermination()


// Start the computation

}
}

object PatternMatch {

import org.apache.spark.streaming._
import org.apache.spark.Partitioner

def main(args: Array[String]) {
val brokers = args(0)
val topics = args(1)
val checkpointDir = args(2)


// Create context with 2 second batch interval
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("PatternMatch")
val ssc = new StreamingContext(sparkConf, Seconds(6))
ssc.checkpoint(checkpointDir)

// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers,
"auto.offset.reset" -> "smallest")

case class Tick(symbol: String, price: Int, ts: Long)

// Read a stream of message from kafka
val messages = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicsSet)

// Get each message and put into a Tick object
val ticks = messages.map(_._2)
.map(_.split("[,:]")).map(p => {
Tick(p(1), p(3).trim.toInt, p(5).trim.toLong)
})

// put into a KV by compName and Timetamp
val kvTicks = ticks.map(t => (t.ts, t))

// define rise, drop & deep predicates
def rise(in: Tick, ew: WindowState): Boolean = {
in.price > ew.first.asInstanceOf[Tick].price &&
in.price >= ew.prev.asInstanceOf[Tick].price
}
def drop(in: Tick, ew: WindowState): Boolean = {
in.price >= ew.first.asInstanceOf[Tick].price &&
in.price < ew.prev.asInstanceOf[Tick].price
}
def deep(in: Tick, ew: WindowState): Boolean = {
in.price < ew.first.asInstanceOf[Tick].price &&
in.price < ew.prev.asInstanceOf[Tick].price
}

// map the predicates to their state names
val predicateMapping: Map[String, (Tick, WindowState) => Boolean] =
Map("rise" -> rise, "drop" -> drop, "deep" -> deep)

val matches = kvTicks.patternMatchByWindow("rise drop [rise ]+ deep".r,
predicateMapping, Seconds(12), Seconds(6))

matches.print()

ssc.start()
ssc.awaitTermination()

// Start the computation

}
}
Original file line number Diff line number Diff line change
Expand Up @@ -857,19 +857,6 @@ abstract class DStream[T: ClassTag] (
)
}


def matchPatternByWindow(
pattern: scala.util.matching.Regex,
predicates: Map[String, (T, WindowMetric) => Boolean],
windowDuration: Duration,
slideDuration: Duration
): DStream[List[T]] = ssc.withScope {
new PatternMatchedDStream[T](
this, pattern, predicates,
windowDuration, slideDuration, new HashPartitioner(1)
)
}

/**
* Return a new DStream by unifying data of another DStream with this DStream.
* @param that Another DStream having the same slideDuration as this DStream.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.streaming.dstream

import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.{CoGroupedRDD, PartitionerAwareUnionRDD, RDD, UnionRDD}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Interval, Time}
import org.apache.spark.{Accumulator, Partitioner, SparkContext}



import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag



private[streaming]
class KeyedPatternMatchDStream[K: ClassTag, V: ClassTag](
parent: DStream[(K, V)],
pattern: scala.util.matching.Regex,
predicates: Map[String, (V, WindowState) => Boolean],
valuesOrderedBy: V => Long,
_windowDuration: Duration,
_slideDuration: Duration,
partitioner: Partitioner
) extends DStream[(K, List[V])](parent.ssc) {

require(_windowDuration.isMultipleOf(parent.slideDuration),
"The window duration of PatternMatchedDStream (" + _windowDuration + ") " +
"must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
)

require(_slideDuration.isMultipleOf(parent.slideDuration),
"The slide duration of PatternMatchedDStream (" + _slideDuration + ") " +
"must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
)


private def aggregateByKey(in: DStream[(K, V)]) : DStream[(K, KeyedWithPrev[V])] = {
val aggregated = in.transform(rdd => {
val zero = new KeyedAggregator[V]()
rdd.aggregateByKey(zero)(
(set, v) => set.append(v),
(set1, set2) => set1 ++= set2)
})
aggregated.transform(rdd => {
val valuesOrderedByCopy = valuesOrderedBy
rdd.mapValues(x => {
x.sortedWithPrev(valuesOrderedByCopy)
})
})
}

val keyedWithPrevStream = aggregateByKey(parent)

super.persist(StorageLevel.MEMORY_ONLY_SER)
keyedWithPrevStream.persist(StorageLevel.MEMORY_ONLY_SER)

def windowDuration: Duration = _windowDuration

override def dependencies: List[DStream[_]] = List(keyedWithPrevStream)

override def slideDuration: Duration = _slideDuration

override val mustCheckpoint = true

override def persist(storageLevel: StorageLevel): DStream[(K, List[V])] = {
super.persist(storageLevel)
keyedWithPrevStream.persist(storageLevel)
this
}

override def checkpoint(interval: Duration): DStream[(K, List[V])] = {
super.checkpoint(interval)
this
}

override def parentRememberDuration: Duration = rememberDuration + windowDuration

override def compute(validTime: Time): Option[RDD[(K, List[V])]] = {

val predicatesCopy = predicates
val patternCopy = pattern;
val currentWindow = new Interval(validTime - windowDuration + parent.slideDuration, validTime)
val previousWindow = currentWindow - slideDuration

val newRDDs = keyedWithPrevStream.slice(previousWindow.endTime + parent.slideDuration,
currentWindow.endTime)

val lastValidRDDs =
keyedWithPrevStream.slice(currentWindow.beginTime, previousWindow.endTime)


// Make the list of RDDs that needs to cogrouped together for pattern matching
val allRDDs = new ArrayBuffer[RDD[(K, KeyedWithPrev[V])]]() ++= lastValidRDDs ++= newRDDs


// Cogroup the reduced RDDs and merge the reduced values
val cogroupedRDD = new CoGroupedRDD[K](allRDDs.toSeq.asInstanceOf[Seq[RDD[(K, _)]]],
partitioner)

val totalValues = lastValidRDDs.size + newRDDs.size

val mergeValues = (arrayOfValues:
Array[org.apache.spark.util.collection.CompactBuffer[KeyedWithPrev[V]]]) => {

val compactBuffervalues =
(0 to totalValues-1).map(i => arrayOfValues(i)).filter(!_.isEmpty).map(_.head)
val values = compactBuffervalues.flatMap(y => y.list)

import scala.collection.mutable.ListBuffer
if (!values.isEmpty) {
val minVal = values(0)
val pattern = values.map(x => {
var isMatch = false
var matchName = "NAN"
for (predicate <- predicatesCopy if !isMatch) {
isMatch = predicate._2(x._1, WindowState(minVal._1, x._2.getOrElse(minVal._1)))
if (isMatch) {
matchName = predicate._1
}
}
(matchName, x._1)
})

val builder = new scala.collection.mutable.StringBuilder()
val map = scala.collection.mutable.HashMap[Long, V]()
var curLen = 1L
for (i <- pattern.iterator) {
builder.append(" " + i._1)
map.put(curLen, i._2)
curLen += i._1.length + 1
}

val matchIt = patternCopy.findAllIn(builder.toString())
val o = ListBuffer[List[V]]()
for (one <- matchIt) {
var len = 0
var ctr = 0
val list = ListBuffer[V]()
one.split(" ").map(sub => {
val id = map.get(matchIt.start + len)
list += id.get
len += sub.length + 1
})
o += list.toList
}
o.toList.asInstanceOf[List[V]]
}
else {
ListBuffer[List[V]]().toList.asInstanceOf[List[V]]
}
}

val mergedValuesRDD = cogroupedRDD.asInstanceOf[RDD[(K,
Array[org.apache.spark.util.collection.CompactBuffer[KeyedWithPrev[V]]])]]
.mapValues(mergeValues)

Some(mergedValuesRDD.filter{case(k, v) => !v.isEmpty })
}
}

import scala.collection.mutable.ListBuffer

private[streaming]
case class KeyedWithPrev[V: ClassTag](val list: List[(V, Option[V])])

private[streaming]
class KeyedAggregator[V: ClassTag](val list: ListBuffer[V]) extends Serializable {

def this() = { this(ListBuffer[V]() ) }

def append(in: V): KeyedAggregator[V] = {
list += in
this
}

def ++=(other: KeyedAggregator[V]): KeyedAggregator[V] = {
new KeyedAggregator(list ++= other.list)
}

def sortedWithPrev(f: V => Long) : KeyedWithPrev[V] = {
val sortedList = list.sortBy(e => f(e))
val it = sortedList.iterator

var start = true
val n = sortedList.map(x => {
(x, if (start) {
start = false
None: Option[V]
} else {
Some(it.next())
})
})
KeyedWithPrev[V](n.toList)
}
}

Loading