-
Notifications
You must be signed in to change notification settings - Fork 260
[ refactor ] use variables more systematically in Data.List.Fresh{.*}
#2916
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 1 commit
02dba80
67ef7e1
6af45e4
de98e4e
c20a2c3
2d081b6
09c8b5f
502c903
563ad4b
0acb35e
cfc60a6
d1d7a7c
ab384a4
64250e8
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -24,7 +24,7 @@ open import Data.Nat.Base using (ℕ; zero; suc) | |||||
| open import Function.Base using (_∘′_; flip; id; _on_) | ||||||
| open import Relation.Nullary using (does) | ||||||
| open import Relation.Unary as U using (Pred) | ||||||
| open import Relation.Binary.Core using (Rel) | ||||||
| open import Relation.Binary.Core using (Rel; REL) | ||||||
| import Relation.Binary.Definitions as B using (Reflexive) | ||||||
jamesmckinna marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
| open import Relation.Nary using (_⇒_; ∀[_]) | ||||||
|
|
||||||
|
|
@@ -34,6 +34,11 @@ private | |||||
| a b p r s : Level | ||||||
| A : Set a | ||||||
| B : Set b | ||||||
| P : Pred A p | ||||||
| R : Rel A r | ||||||
| S : Rel A s | ||||||
| x y : A | ||||||
|
|
||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Basic type | ||||||
|
|
@@ -44,11 +49,11 @@ private | |||||
| module _ {a} (A : Set a) (R : Rel A r) where | ||||||
|
|
||||||
| data List# : Set (a ⊔ r) | ||||||
| fresh : (a : A) (as : List#) → Set r | ||||||
| fresh : REL A List# r | ||||||
|
|
||||||
| data List# where | ||||||
| [] : List# | ||||||
| cons : (a : A) (as : List#) → fresh a as → List# | ||||||
| cons : (x : A) (xs : List#) → fresh x xs → List# | ||||||
|
|
||||||
| -- Whenever R can be reconstructed by η-expansion (e.g. because it is | ||||||
| -- the erasure ⌊_⌋ of a decidable predicate, cf. Relation.Nary) or we | ||||||
|
|
@@ -64,145 +69,145 @@ module _ {a} (A : Set a) (R : Rel A r) where | |||||
|
|
||||||
| -- Convenient notation for freshness making A and R implicit parameters | ||||||
| infix 5 _#_ | ||||||
| _#_ : {R : Rel A r} (a : A) (as : List# A R) → Set r | ||||||
| _#_ : REL A (List# A R) _ | ||||||
| _#_ = fresh _ _ | ||||||
|
Comment on lines
69
to
72
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The whole intention behind this PR is to better support generalisation over Unfortunately, this sometime means that some statements involving I see two possible solutions:
Thoughts? Eg. as -- Convenient notation for freshness making A (and R) implicit
infix 5 _#[_]_ _#_
_#[_]_ : A → (R : Rel A r) → Pred (List# A R) _
x #[ R ] xs = fresh _ R x xs
_#_ : REL A (List# A R) _
x # xs = x #[ _ ] xs |
||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Operations for modifying fresh lists | ||||||
|
|
||||||
| module _ {R : Rel A r} {S : Rel B s} (f : A → B) (R⇒S : ∀[ R ⇒ (S on f) ]) where | ||||||
| module _ (f : A → B) (R⇒S : ∀[ R ⇒ (S on f) ]) where | ||||||
|
|
||||||
| map : List# A R → List# B S | ||||||
| map-# : ∀ {a} as → a # as → f a # map as | ||||||
| map-# : ∀ xs → x # xs → f x # map xs | ||||||
|
|
||||||
| map [] = [] | ||||||
| map (cons a as ps) = cons (f a) (map as) (map-# as ps) | ||||||
| map (cons x xs ps) = cons (f x) (map xs) (map-# xs ps) | ||||||
|
|
||||||
| map-# [] _ = _ | ||||||
| map-# (a ∷# as) (p , ps) = R⇒S p , map-# as ps | ||||||
| map-# (x ∷# xs) (p , ps) = R⇒S p , map-# xs ps | ||||||
|
|
||||||
| module _ {R : Rel B r} (f : A → B) where | ||||||
| module _ (f : A → B) where | ||||||
|
|
||||||
| map₁ : List# A (R on f) → List# B R | ||||||
| map₁ = map f id | ||||||
|
|
||||||
| module _ {R : Rel A r} {S : Rel A s} (R⇒S : ∀[ R ⇒ S ]) where | ||||||
| module _ {S : Rel A s} (R⇒S : ∀[ R ⇒ S ]) where | ||||||
|
|
||||||
| map₂ : List# A R → List# A S | ||||||
| map₂ = map id R⇒S | ||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Views | ||||||
|
|
||||||
| data Empty {A : Set a} {R : Rel A r} : List# A R → Set (a ⊔ r) where | ||||||
| data Empty {A : Set a} {R : Rel A r} : Pred (List# A R) (a ⊔ r) where | ||||||
| [] : Empty [] | ||||||
|
|
||||||
| data NonEmpty {A : Set a} {R : Rel A r} : List# A R → Set (a ⊔ r) where | ||||||
| data NonEmpty {A : Set a} {R : Rel A r} : Pred (List# A R) (a ⊔ r) where | ||||||
| cons : ∀ x xs pr → NonEmpty (cons x xs pr) | ||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Operations for reducing fresh lists | ||||||
|
|
||||||
| length : {R : Rel A r} → List# A R → ℕ | ||||||
| length : List# A R → ℕ | ||||||
| length [] = 0 | ||||||
| length (_ ∷# xs) = suc (length xs) | ||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Operations for constructing fresh lists | ||||||
|
|
||||||
| pattern [_] a = a ∷# [] | ||||||
| pattern [_] x = x ∷# [] | ||||||
|
|
||||||
| fromMaybe : {R : Rel A r} → Maybe A → List# A R | ||||||
| fromMaybe : Maybe A → List# A R | ||||||
| fromMaybe nothing = [] | ||||||
| fromMaybe (just a) = [ a ] | ||||||
| fromMaybe (just x) = [ x ] | ||||||
|
|
||||||
| module _ {R : Rel A r} (R-refl : B.Reflexive R) where | ||||||
| module _ (R-refl : B.Reflexive {A = A} R) where | ||||||
jamesmckinna marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
|
|
||||||
| replicate : ℕ → A → List# A R | ||||||
| replicate-# : (n : ℕ) (a : A) → a # replicate n a | ||||||
| replicate-# : (n : ℕ) (x : A) → x # replicate n x | ||||||
|
|
||||||
| replicate zero a = [] | ||||||
| replicate (suc n) a = cons a (replicate n a) (replicate-# n a) | ||||||
| replicate zero x = [] | ||||||
| replicate (suc n) x = cons x (replicate n x) (replicate-# n x) | ||||||
|
|
||||||
| replicate-# zero a = _ | ||||||
| replicate-# (suc n) a = R-refl , replicate-# n a | ||||||
| replicate-# zero x = _ | ||||||
| replicate-# (suc n) x = R-refl , replicate-# n x | ||||||
jamesmckinna marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Operations for deconstructing fresh lists | ||||||
|
|
||||||
| uncons : {R : Rel A r} → List# A R → Maybe (A × List# A R) | ||||||
| uncons : List# A R → Maybe (A × List# A R) | ||||||
| uncons [] = nothing | ||||||
| uncons (a ∷# as) = just (a , as) | ||||||
| uncons (x ∷# xs) = just (x , xs) | ||||||
|
|
||||||
| head : {R : Rel A r} → List# A R → Maybe A | ||||||
| head : List# A R → Maybe A | ||||||
| head = Maybe.map proj₁ ∘′ uncons | ||||||
|
|
||||||
| tail : {R : Rel A r} → List# A R → Maybe (List# A R) | ||||||
| tail : List# A R → Maybe (List# A R) | ||||||
| tail = Maybe.map proj₂ ∘′ uncons | ||||||
|
|
||||||
| take : {R : Rel A r} → ℕ → List# A R → List# A R | ||||||
| take-# : {R : Rel A r} → ∀ n a (as : List# A R) → a # as → a # take n as | ||||||
| take : ℕ → List# A R → List# A R | ||||||
| take-# : ∀ n y (xs : List# A R) → y # xs → y # take n xs | ||||||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Eg if we were to introduce
Suggested change
|
||||||
|
|
||||||
| take zero xs = [] | ||||||
| take (suc n) [] = [] | ||||||
| take (suc n) (cons a as ps) = cons a (take n as) (take-# n a as ps) | ||||||
| take (suc n) (cons x xs ps) = cons x (take n xs) (take-# n x xs ps) | ||||||
|
|
||||||
| take-# zero a xs _ = _ | ||||||
| take-# (suc n) a [] ps = _ | ||||||
| take-# (suc n) a (x ∷# xs) (p , ps) = p , take-# n a xs ps | ||||||
| take-# zero y xs _ = _ | ||||||
| take-# (suc n) y [] ps = _ | ||||||
| take-# (suc n) y (x ∷# xs) (p , ps) = p , take-# n y xs ps | ||||||
|
|
||||||
| drop : {R : Rel A r} → ℕ → List# A R → List# A R | ||||||
| drop zero as = as | ||||||
| drop : ℕ → List# A R → List# A R | ||||||
| drop zero xs = xs | ||||||
| drop (suc n) [] = [] | ||||||
| drop (suc n) (a ∷# as) = drop n as | ||||||
| drop (suc n) (x ∷# xs) = drop n xs | ||||||
|
|
||||||
| module _ {P : Pred A p} (P? : U.Decidable P) where | ||||||
| module _ (P? : U.Decidable {A = A} P) where | ||||||
|
|
||||||
| takeWhile : {R : Rel A r} → List# A R → List# A R | ||||||
| takeWhile-# : ∀ {R : Rel A r} a (as : List# A R) → a # as → a # takeWhile as | ||||||
| takeWhile : List# A R → List# A R | ||||||
| takeWhile-# : ∀ y (xs : List# A R) → y # xs → y # takeWhile xs | ||||||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Similarly
Suggested change
|
||||||
|
|
||||||
| takeWhile [] = [] | ||||||
| takeWhile (cons a as ps) = | ||||||
| if does (P? a) then cons a (takeWhile as) (takeWhile-# a as ps) else [] | ||||||
| takeWhile (cons x xs ps) = | ||||||
| if does (P? x) then cons x (takeWhile xs) (takeWhile-# x xs ps) else [] | ||||||
|
|
||||||
| -- this 'with' is needed to cause reduction in the type of 'takeWhile (a ∷# as)' | ||||||
| takeWhile-# a [] _ = _ | ||||||
| takeWhile-# a (x ∷# xs) (p , ps) with does (P? x) | ||||||
| ... | true = p , takeWhile-# a xs ps | ||||||
| takeWhile-# y [] _ = _ | ||||||
| takeWhile-# y (x ∷# xs) (p , ps) with does (P? x) | ||||||
| ... | true = p , takeWhile-# y xs ps | ||||||
| ... | false = _ | ||||||
|
|
||||||
| dropWhile : {R : Rel A r} → List# A R → List# A R | ||||||
| dropWhile : List# A R → List# A R | ||||||
| dropWhile [] = [] | ||||||
| dropWhile aas@(a ∷# as) = if does (P? a) then dropWhile as else aas | ||||||
| dropWhile xxs@(x ∷# xs) = if does (P? x) then dropWhile xs else xxs | ||||||
|
|
||||||
| filter : {R : Rel A r} → List# A R → List# A R | ||||||
| filter-# : ∀ {R : Rel A r} a (as : List# A R) → a # as → a # filter as | ||||||
| filter : List# A R → List# A R | ||||||
| filter-# : ∀ y (xs : List# A R) → y # xs → y # filter xs | ||||||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
etc. |
||||||
|
|
||||||
| filter [] = [] | ||||||
| filter (cons a as ps) = | ||||||
| let l = filter as in | ||||||
| if does (P? a) then cons a l (filter-# a as ps) else l | ||||||
| filter (cons x xs ps) = | ||||||
| let l = filter xs in | ||||||
| if does (P? x) then cons x l (filter-# x xs ps) else l | ||||||
|
|
||||||
| -- this 'with' is needed to cause reduction in the type of 'filter-# a (x ∷# xs)' | ||||||
| filter-# a [] _ = _ | ||||||
| filter-# a (x ∷# xs) (p , ps) with does (P? x) | ||||||
| ... | true = p , filter-# a xs ps | ||||||
| ... | false = filter-# a xs ps | ||||||
| -- this 'with' is needed to cause reduction in the type of 'filter-# y (x ∷# xs)' | ||||||
| filter-# y [] _ = _ | ||||||
| filter-# y (x ∷# xs) (p , ps) with does (P? x) | ||||||
| ... | true = p , filter-# y xs ps | ||||||
| ... | false = filter-# y xs ps | ||||||
|
|
||||||
| ------------------------------------------------------------------------ | ||||||
| -- Relationship to List and AllPairs | ||||||
|
|
||||||
| toList : {R : Rel A r} → List# A R → ∃ (AllPairs R) | ||||||
| toAll : ∀ {R : Rel A r} {a} as → fresh A R a as → All (R a) (proj₁ (toList as)) | ||||||
| toList : List# A R → ∃ (AllPairs R) | ||||||
| toAll : (xs : List# A R) → x # xs → All (R x) (proj₁ (toList xs)) | ||||||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
|
||||||
| toList [] = -, [] | ||||||
| toList (cons x xs ps) = -, toAll xs ps ∷ proj₂ (toList xs) | ||||||
|
|
||||||
| toAll [] ps = [] | ||||||
| toAll (a ∷# as) (p , ps) = p ∷ toAll as ps | ||||||
| toAll (x ∷# xs) (p , ps) = p ∷ toAll xs ps | ||||||
|
|
||||||
| fromList : ∀ {R : Rel A r} {xs} → AllPairs R xs → List# A R | ||||||
| fromList-# : ∀ {R : Rel A r} {x xs} (ps : AllPairs R xs) → | ||||||
| fromList : ∀ {xs} → AllPairs R xs → List# A R | ||||||
| fromList-# : ∀ {xs} (ps : AllPairs R xs) → | ||||||
| All (R x) xs → x # fromList ps | ||||||
|
|
||||||
| fromList [] = [] | ||||||
|
|
||||||
Uh oh!
There was an error while loading. Please reload this page.