Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,18 @@ Additions to existing modules
pattern divides k eq = Data.Nat.Divisibility.divides k eq
```

* In `Data.List.Properties`:
```agda
applyUpTo-∷ʳ : applyUpTo f n ∷ʳ f n ≡ applyUpTo f (suc n)
applyDownFrom-∷ʳ : applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡ applyDownFrom f (suc n)
upTo-∷ʳ : upTo n ∷ʳ n ≡ upTo (suc n)
downFrom-∷ʳ : applyDownFrom suc n ∷ʳ 0 ≡ downFrom (suc n)
applyUpTo-applyDownFrom : reverse (applyUpTo f n) ≡ applyDownFrom f n
upTo-downFrom : reverse (upTo n) ≡ downFrom n
applyDownFrom-applyUpTo : reverse (applyDownFrom f n) ≡ applyUpTo f n
downFrom-upTo : reverse (downFrom n) ≡ upTo n
```

* In `Data.List.Relation.Unary.All.Properties`:
```agda
All-catMaybes⁺ : All (Maybe.All P) xs → All P (catMaybes xs)
Expand Down
41 changes: 40 additions & 1 deletion src/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -657,8 +657,12 @@ lookup-applyUpTo : ∀ (f : ℕ → A) n i → lookup (applyUpTo f n) i ≡ f (t
lookup-applyUpTo f (suc n) zero = refl
lookup-applyUpTo f (suc n) (suc i) = lookup-applyUpTo (f ∘ suc) n i

applyUpTo-∷ʳ : ∀ (f : ℕ → A) n → applyUpTo f n ∷ʳ f n ≡ applyUpTo f (suc n)
applyUpTo-∷ʳ f zero = refl
applyUpTo-∷ʳ f (suc n) = cong (f 0 ∷_) (applyUpTo-∷ʳ (f ∘ suc) n)

------------------------------------------------------------------------
-- applyUpTo
-- applyDownFrom

module _ (f : ℕ → A) where

Expand All @@ -670,6 +674,10 @@ module _ (f : ℕ → A) where
lookup-applyDownFrom (suc n) zero = refl
lookup-applyDownFrom (suc n) (suc i) = lookup-applyDownFrom n i

applyDownFrom-∷ʳ : ∀ n → applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡ applyDownFrom f (suc n)
applyDownFrom-∷ʳ zero = refl
applyDownFrom-∷ʳ (suc n) = cong (f (suc n) ∷_) (applyDownFrom-∷ʳ n)

------------------------------------------------------------------------
-- upTo

Expand All @@ -679,6 +687,9 @@ length-upTo = length-applyUpTo id
lookup-upTo : ∀ n i → lookup (upTo n) i ≡ toℕ i
lookup-upTo = lookup-applyUpTo id

upTo-∷ʳ : ∀ n → upTo n ∷ʳ n ≡ upTo (suc n)
upTo-∷ʳ = applyUpTo-∷ʳ id

------------------------------------------------------------------------
-- downFrom

Expand All @@ -688,6 +699,9 @@ length-downFrom = length-applyDownFrom id
lookup-downFrom : ∀ n i → lookup (downFrom n) i ≡ n ∸ (suc (toℕ i))
lookup-downFrom = lookup-applyDownFrom id

downFrom-∷ʳ : ∀ n → applyDownFrom suc n ∷ʳ 0 ≡ downFrom (suc n)
downFrom-∷ʳ = applyDownFrom-∷ʳ id

------------------------------------------------------------------------
-- tabulate

Expand Down Expand Up @@ -1173,6 +1187,31 @@ reverse-foldl : ∀ (f : B → A → B) b xs →
foldl f b (reverse xs) ≡ foldr (flip f) b xs
reverse-foldl f b xs = foldl-ʳ++ f b xs

------------------------------------------------------------------------
-- reverse, applyUpTo, and applyDownFrom

applyUpTo-applyDownFrom : ∀ (f : ℕ → A) n → reverse (applyUpTo f n) ≡ applyDownFrom f n
applyUpTo-applyDownFrom f zero = refl
applyUpTo-applyDownFrom f (suc n) = begin
reverse (f 0 ∷ applyUpTo (f ∘ suc) n) ≡⟨ reverse-++ [ f 0 ] (applyUpTo (f ∘ suc) n) ⟩
reverse (applyUpTo (f ∘ suc) n) ∷ʳ f 0 ≡⟨ cong (_∷ʳ f 0) (applyUpTo-applyDownFrom (f ∘ suc) n) ⟩
applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡⟨ applyDownFrom-∷ʳ f n ⟩
applyDownFrom f (suc n) ∎

upTo-downFrom : ∀ n → reverse (upTo n) ≡ downFrom n
upTo-downFrom = applyUpTo-applyDownFrom id

applyDownFrom-applyUpTo : ∀ (f : ℕ → A) n → reverse (applyDownFrom f n) ≡ applyUpTo f n
applyDownFrom-applyUpTo f zero = refl
applyDownFrom-applyUpTo f (suc n) = begin
reverse (f n ∷ applyDownFrom f n) ≡⟨ reverse-++ [ f n ] (applyDownFrom f n) ⟩
reverse (applyDownFrom f n) ∷ʳ f n ≡⟨ cong (_∷ʳ f n) (applyDownFrom-applyUpTo f n) ⟩
applyUpTo f n ∷ʳ f n ≡⟨ applyUpTo-∷ʳ f n ⟩
applyUpTo f (suc n) ∎

downFrom-upTo : ∀ n → reverse (downFrom n) ≡ upTo n
downFrom-upTo = applyDownFrom-applyUpTo id

------------------------------------------------------------------------
-- _∷ʳ_

Expand Down