Skip to content

Type59pro/peptide-pose-predictor

Repository files navigation

Peptide Pose Predictor

This project provides a tool to predict the quality (RMSD) of a peptide pose docked to a protein using an EGNN model.

Installation

  1. Clone the repository.

  2. Install the package and dependencies:

    pip install .

    Note: For torch and torch_geometric, it is recommended to install them manually first to ensure compatibility with your CUDA version (if applicable).

Usage

The installation provides a command-line tool ppp.

ppp --prot <path_to_protein.pdb> --pep <path_to_peptide.pdb>

Arguments

  • --prot: Path to the protein PDB file.
  • --pep: Path to the peptide PDB file.
  • --model: (Optional) Path to the trained model file (best_model_egnn.pth). If not provided, the script attempts to find it in the installation directory or current directory.

Example

ppp --prot examples/protein.pdb --pep examples/peptide.pdb

Files

  • peptide_pose_predictor/predict.py: The main entry point for the CLI.
  • peptide_pose_predictor/build_graph.py: Logic for converting PDB files to graphs.
  • peptide_pose_predictor/inference.py: Inference logic and model definition.
  • peptide_pose_predictor/training.py: Training script.
  • peptide_pose_predictor/best_model_egnn.pth: Pre-trained model weights.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages