Skip to content

ThalesGroup/fred

Fred

Fred is both:

  • An innovation lab — helping developers rapidly explore agentic patterns, domain-specific logic, and custom tools.
  • A production-ready platform — already integrated with real enterprise constraints: auth, security, document lifecycle, and deployment best practices.

It is composed of:

  • a Python agentic backend (FastAPI + LangGraph)
  • a Python knowledge flow backend (FastAPI) for document ingestion and vector search
  • a React frontend

Fred provides a number of easy examples to start with. These are provided in so-called 'academy' folders for you to play with mcp server or agent development.

Fred is not a development framework, rather a full reference implementation that shows how to build practical multi-agent applications with LangChain and LangGraph. Agents cooperate to answer technical, context-aware questions.

See the project site: https://fredk8.dev

Contents:

Getting started

To ensure a smooth first-time experience, Fred’s maintainers designed Dev Container/Native startup to require no additional external components (except, of course, to LLM APIs).

By default, using either Dev Container or native startup:

  • Fred stores all data on the local filesystem or through local-first tools such as DuckDB (for SQL-like data) and ChromaDB (for local embeddings). Data includes metrics, chat conversations, document uploads, and embeddings.
  • Authentication and authorization are mocked.

Note:
Accross all setup modes, a common requirement is to have access to Large Language Model (LLM) APIs via a model provider. Supported options include:

  • Public OpenAI APIs: Connect using your OpenAI API key.
  • Private Ollama Server: Host open-source models such as Mistral, Qwen, Gemma, and Phi locally or on a shared server.
  • Private Azure AI Endpoints: Connect using your Azure OpenAI key.

Detailed instructions for configuring your chosen model provider are provided below.

Development environment setup

Choose how you want to prepare Fred's development environment:

Option 1 (recommended): Let the Dev Container do it for you!

Details

Prefer an isolated environment with everything pre-installed?

The Dev Container setup takes care of all dependencies related to agentic backend, knowledge-flow backend, and frontend components.

Prerequisites
Tool Purpose
Docker / Docker Desktop Runs the container
VS Code Primary IDE
Dev Containers extension (ms-vscode-remote.remote-containers) Opens the repo inside the container
Open the container
  1. Clone (or open) the repository in VS Code.
  2. Press F1Dev Containers: Reopen in Container.

When the terminal prompt appears, the workspace is ready but you still need to run the different services with make run as specified in the next section. Ports 8000 (Agentic backend), 8111 (Knowledge Flow backend), and 5173 (Frontend (vite)) are automatically forwarded to the host.

Rebuilds & troubleshooting
  • Rebuild the container: F1Dev Containers: Rebuild Container
  • Dependencies feel stale? Delete the relevant .venv or frontend/node_modules inside the container, then rerun the associated make target.
  • Need to change API keys or models? Update the backend .env files inside the container and restart the relevant service. See Model configuration for more details.

Option 2: Native mode i.e. install everything locally

Details

Note: Note that this native mode only applies to Unix-based OS (e.g., Mac or Linux-related OS).

Prerequisites
First, make sure you have all the requirements installed
Tool Type Version Install hint
Pyenv Python installer latest Pyenv installation instructions
Python Programming language 3.12.8 Use pyenv install 3.12.8
python3-venv Python venv module/package matching Bundled with Python 3 on most systems; otherwise apt install python3-venv (Debian/Ubuntu)
nvm Node installer latest nvm installation instructions
Node.js Programming language 22.13.0 Use nvm install 22.13.0
Make Utility system Install via system package manager (e.g., apt install make, brew install make)
yq Utility system Install via system package manager
SQLite Local RDBMS engine ≥ 3.35.0 Install via system package manager
Pandoc 2.9.2.1 Pandoc installation instructions For DOCX document ingestion
LibreOffice Headless doc converter LibreOffice installation instructions For PPTX conversion into PDF
Dependency details
graph TD
    subgraph FredComponents["Fred Components"]
      style FredComponents fill:#b0e57c,stroke:#333,stroke-width:2px  %% Green Color
        Agentic["agentic-backend"]
        Knowledge["knowledge-flow-backend"]
        Frontend["frontend"]
    end

    subgraph ExternalDependencies["External Dependencies"]
      style ExternalDependencies fill:#74a3d9,stroke:#333,stroke-width:2px  %% Blue Color
        Venv["python3-venv"]
        Python["Python 3.12.8"]
        SQLite["SQLite"]
        Pandoc["Pandoc"]
        Pyenv["Pyenv (Python installer)"]
        Node["Node 22.13.0"]
        NVM["nvm (Node installer)"]
    end

    subgraph Utilities["Utilities"]
      style Utilities fill:#f9d5e5,stroke:#333,stroke-width:2px  %% Pink Color
        Make["Make utility"]
        Yq["yq (YAML processor)"]
    end

    Agentic -->|depends on| Python
    Agentic -->|depends on| Knowledge
    Agentic -->|depends on| Venv

    Knowledge -->|depends on| Python
    Knowledge -->|depends on| Venv
    Knowledge -->|depends on| Pandoc
    Knowledge -->|depends on| SQLite

    Frontend -->|depends on| Node

    Python -->|depends on| Pyenv

    Node -->|depends on| NVM

Loading
Clone the repo
git clone https://github.com/ThalesGroup/fred.git
cd fred

Advanced developer tips

Prerequisites:

  • Visual Studio Code
  • VS Code extensions:
    • Python (ms-python.python)
    • Pylance (ms-python.vscode-pylance)

To get full VS Code Python support (linting, IntelliSense, debugging, etc.) across our repo, we provide:

1. A VS Code workspace file `fred.code-workspace` that loads all sub‑projects.

After cloning the repo, you can open Fred's VS Code workspace with code .vscode/fred.code-workspace

When you open Fred's VS Code workspace, VS Code will load four folders:

  • fred – for any repo‑wide files, scripts, etc
  • agentic-backend – first Python backend
  • knowledge-flow-backend – second Python backend
  • fred-core - a common python library for both python backends
  • frontend – UI
2. Per‑folder `.vscode/settings.json` files in each Python backend to pin the interpreter.

Each backend ships its own virtual environment under .venv. We’ve added a per‑folder VS Code setting (see for instance agentic_backend/.vscode/settings.json) to automatically pick it:

This ensures that as soon as you open a Python file under agentic_backend/ (or knowledge_flow_backend/), VS Code will:

  • Activate that folder’s virtual environment
  • Provide linting, IntelliSense, formatting, and debugging using the correct Python

Model configuration

Default Chat Models (Agentic Backend)

Within the agentic backend, Fred uses default models that serve as the primary AI components for agents. These models determine how agents handle both conversational and general AI tasks.

Key Concepts
  • Default Chat Model
    This is the model used for all conversational tasks within the agentic backend. Every agent relies on this model unless a specific agent configuration overrides it. It includes configurable options such as temperature, retry limits, and request timeouts.

  • Default Language Model
    This model is used for non-chat AI tasks. If it is not explicitly defined, the agentic backend automatically falls back to the default chat model. This ensures consistent behavior and prevents runtime errors when a separate language model is not set.

In the agentic-backend configuration these can be set as is:

ai:
  default_chat_model:
    # Required in .env:
    # - OPENAI_API_KEY
    provider: "openai"
    name: "gpt-4o"
    settings: {}
  default_language_model:
    # Required in .env:
    # - OPENAI_API_KEY
    provider: "openai"
    name: "gpt-4o"
    settings: {}

⚠️ default_language_model overrides default_chat_model if set.

Notes
  • Credentials for the chosen model provider (OpenAI, Azure OpenAI, Ollama, etc.) must be provided in the agentic backend’s environment files.
  • These default models form the base of all AI capabilities within the agentic backend, and all agents leverage them unless explicitly configured otherwise.
  • Updating the default models in the configuration changes the behavior of all agents, so it is a central point for tuning the system.

Set it up according to your development environment

No matter which development environment you choose, both backends rely on two pairs of .env/configuration.yaml files for credentials and model settings:

  • Agentic backend: agentic-backend/config/.env and agentic-backend/config/configuration.yaml
  • Knowledge Flow backend: knowledge-flow-backend/config/.env and knowledge-flow-backend/config/configuration.yaml
  1. Copy the templates (skip if they already exist).

    cp agentic-backend/config/.env.template agentic-backend/config/.env
    cp knowledge-flow-backend/config/.env.template knowledge-flow-backend/config/.env
  2. Edit the .env files to set the API keys, base URLs, and deployment names that match your model provider.

  3. Update each backend’s configuration.yaml so the provider, name, and optional settings align with the same provider. Use the recipes below as a starting point.

OpenAI

Note: Out of the box, Fred is configured to use OpenAI public APIs with the following models:

  • agentic backend: chat model gpt-4o
  • knowledge flow backend: chat model gpt-4o-mini and embedding model text-embedding-3-large

If you plan to use Fred with these OpenAI models, you don't have to perform the yq commands below—just make sure the .env files contain your key.

  • agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "openai"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-openai-model-name>"' -i agentic-backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic-backend/config/configuration.yaml
  • knowledge flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "openai"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-openai-model-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "openai"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-openai-model-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
  • Copy-paste your OPENAI_API_KEY value in both .env files.

    ⚠️ An OPENAI_API_KEY from a free OpenAI account unfortunately does not work.

Azure OpenAI
  • agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "azure-openai"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-azure-openai-deployment-name>"' -i agentic-backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i agentic-backend/config/configuration.yaml
  • knowledge flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "azure-openai"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-azure-openai-deployment-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge-flow-backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "azure-openai"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-azure-openai-deployment-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge-flow-backend/config/configuration.yaml
    • Vision model

      yq eval '.vision_model.provider = "azure-openai"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.vision_model.name = "<your-azure-openai-deployment-name>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval 'del(.vision_model.settings)' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.vision_model.settings.azure_endpoint = "<your-azure-openai-endpoint>"' -i knowledge_flow_backend/config/configuration.yaml
      yq eval '.vision_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge_flow_backend/config/configuration.yaml
  • Copy-paste your AZURE_OPENAI_API_KEY value in both .env files.

Ollama
  • agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "ollama"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-ollama-model-name>"' -i agentic-backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.base_url = "<your-ollama-endpoint>"' -i agentic-backend/config/configuration.yaml
  • knowledge flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "ollama"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-ollama-model-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.base_url = "<your-ollama-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "ollama"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-ollama-model-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.base_url = "<your-ollama-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
Azure OpenAI via Azure APIM
  • agentic backend configuration

    • Chat model

      yq eval '.ai.default_chat_model.provider = "azure-apim"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.name = "<your-azure-openai-deployment-name>"' -i agentic-backend/config/configuration.yaml
      yq eval 'del(.ai.default_chat_model.settings)' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i agentic-backend/config/configuration.yaml
      yq eval '.ai.default_chat_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i agentic-backend/config/configuration.yaml
  • knowledge flow backend configuration

    • Chat model

      yq eval '.chat_model.provider = "azure-apim"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.name = "<your-azure-openai-deployment-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.chat_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.chat_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i knowledge-flow-backend/config/configuration.yaml
    • Embedding model

      yq eval '.embedding_model.provider = "azure-apim"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.name = "<your-azure-openai-deployment-name>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval 'del(.embedding_model.settings)' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_ad_client_id = "<your-azure-apim-client-id>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_ad_client_scope = "<your-azure-apim-client-scope>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_apim_base_url = "<your-azure-apim-endpoint>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_apim_resource_path = "<your-azure-apim-resource-path>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_openai_api_version = "<your-azure-openai-api-version>"' -i knowledge-flow-backend/config/configuration.yaml
      yq eval '.embedding_model.settings.azure_tenant_id = "<your-azure-tenant-id>"' -i knowledge-flow-backend/config/configuration.yaml
  • Copy-paste your AZURE_AD_CLIENT_SECRET and AZURE_APIM_SUBSCRIPTION_KEY values in both .env files.

Start Fred components

# knowledge-flow backend
cd knowledge-flow-backend && make run
# agentic backend
cd agentic_backend && make run
# frontend
cd frontend && make run

Head for the Fred UI!

Open http://localhost:5173 in your browser.

Production mode

For production deployments (Kubernetes, VMs, on-prem or cloud), refer to:

The rest of this README.md focuses on local developer setup and model configuration.

Agent coding academy

Refer to the sample third-party applications in academy samples. Refer to the academy agents for a number of sample agents.

Advanced configuration

System Architecture

Component Location Role
Frontend UI ./frontend React-based chatbot
Agentic backend ./agentic-backend Multi-agent API server
Knowledge Flow backend ./knowledge-flow-backend Optional knowledge management component (document ingestion & Co)

Configuration Files

File Purpose Tip
agentic-backend/config/.env Secrets (API keys, passwords). Not committed to Git. Copy .env.template to .env and then fill in any missing values.
knowledge-flow-backend/config/.env Same as above Same as above
agentic-backend/config/configuration.yaml Functional settings (providers, agents, feature flags). -
knowledge-flow-backend/config/configuration.yaml Same as above -

Supported Model Providers

Provider How to enable
OpenAI (default) Add OPENAI_API_KEY to config/.env; Adjust configuration.yaml
Azure OpenAI Add AZURE_OPENAI_API_KEY to config/.env; Adjust configuration.yaml
Azure OpenAI via Azure APIM Add AZURE_APIM_SUBSCRIPTION_KEY and AZURE_AD_CLIENT_SECRET to config/.env; Adjust configuration.yaml
Ollama (local models) Adjust configuration.yaml

See agentic-backend/config/configuration.yaml (section ai:) and knowledge-flow-backend/config/configuration.yaml (sections chat_model: and embedding_model:) for concrete examples.

Advanced Integrations

  • Enable Keycloak or another OIDC provider for authentication
  • Persist metrics and files in OpenSearch and MinIO

Core Architecture and Licensing Clarity

The three components just described form the entirety of the Fred platform. They are self-contained and do not require any external dependencies such as MinIO, OpenSearch, or Weaviate.

Instead, Fred is designed with a modular architecture that allows optional integration with these technologies. By default, a minimal Fred deployment can use just the local filesystem for all storage needs.

Documentation

Licensing Note

Fred is released under the Apache License 2.0. It does *not embed or depend on any LGPLv3 or copyleft-licensed components. Optional integrations (like OpenSearch or Weaviate) are configured externally and do not contaminate Fred's licensing. This ensures maximum freedom and clarity for commercial and internal use.

In short: Fred is 100% Apache 2.0, and you stay in full control of any additional components.

See the LICENSE for more details.

Contributing

We welcome pull requests and issues. Start with the Contributing guide.

Community

Join the discussion on our Discord server!

Join our Discord

Contacts

About

the UI and agentic backend of the fred innovation track

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

 
 
 

Contributors 16