Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions paddle/phi/infermeta/backward.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1135,6 +1135,19 @@ void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
dx->share_meta(x);
}

void MedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_data,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
bool keep_dim,
const std::string& mode,
MetaTensor* x_grad) {
auto x_dims = x.dims();
x_grad->set_dims(x_dims);
x_grad->set_dtype(x.dtype());
}

void MemoryEfficientAttentionGradInferMeta(const MetaTensor& query,
const MetaTensor& key,
const MetaTensor& value,
Expand Down Expand Up @@ -1417,6 +1430,7 @@ void MultiplexGradInferMeta(const MetaTensor& ids,
}

void NanmedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_data,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
Expand Down
10 changes: 10 additions & 0 deletions paddle/phi/infermeta/backward.h
Original file line number Diff line number Diff line change
Expand Up @@ -446,6 +446,15 @@ void MaxPoolWithIndexGradInferMeta(const MetaTensor& x,
bool ceil_mode,
MetaTensor* dx);

void MedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_data,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
bool keep_dim,
const std::string& mode,
MetaTensor* x_grad);

void MeshgridGradInferMeta(const std::vector<const MetaTensor*>& inputs,
const std::vector<const MetaTensor*>& outputs_grad,
std::vector<MetaTensor*> inputs_grad);
Expand Down Expand Up @@ -525,6 +534,7 @@ void MultiplexGradInferMeta(const MetaTensor& ids,
std::vector<MetaTensor*> ins_grad);

void NanmedianGradInferMeta(const MetaTensor& x,
const MetaTensor& median_data,
const MetaTensor& median_index,
const MetaTensor& out_grad,
const IntArray& axes,
Expand Down
74 changes: 74 additions & 0 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2890,6 +2890,80 @@ void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out) {
out->set_layout(x.layout());
}

void MedianInferMeta(const MetaTensor& x,
const IntArray& axes,
bool keep_dim,
const std::string& mode,
MetaTensor* out,
MetaTensor* median_index) {
std::vector<int64_t> axis_list = axes.GetData();
auto x_dim = x.dims();
int64_t x_rank = x_dim.size();

std::vector<int64_t> out_dim;
if (axis_list.empty()) {
if (keep_dim) {
for (int64_t i = 0; i < x_rank; i++) {
out_dim.push_back(1);
}
}
} else {
std::vector<int64_t> formatted_axis;
for (auto& axis : axis_list) {
if (x_rank == 0) {
PADDLE_ENFORCE_EQ(axis == 0 || axis == -1,
true,
common::errors::InvalidArgument(
"When input 0D Tensor, each element of the axis "
"can only be -1, 0, None"));
} else {
PADDLE_ENFORCE_LT(axis,
x_rank,
errors::InvalidArgument(
"each element of the axis should be in the "
"range [ -dimension(X), dimension(X) ) "
"which dimension = %d. But received axis = %d.",
x_rank,
axis));
PADDLE_ENFORCE_GE(axis,
-x_rank,
errors::InvalidArgument(
"each element of the axis should be in the "
"range [ -dimension(X), dimension(X) ) "
"which dimension = %d. But received axis = %d.",
x_rank,
axis));
}
if (axis < 0) axis += x_rank;
PADDLE_ENFORCE_EQ(
std::find(formatted_axis.begin(), formatted_axis.end(), axis),
formatted_axis.end(),
errors::InvalidArgument("Attr(axes) has duplicated elements: %d.",
static_cast<int>(axis)));

formatted_axis.push_back(axis);
}

for (int64_t i = 0; i < x_rank; i++) {
if (std::find(formatted_axis.begin(), formatted_axis.end(), i) ==
formatted_axis.end()) {
out_dim.push_back(x_dim[i]); // NOLINT
} else if (keep_dim) {
out_dim.push_back(1);
}
}
}
out->set_dtype(x.dtype());
out->set_dims(make_ddim(out_dim));

auto median_dim = out_dim;
if (mode == "avg") {
median_dim.push_back(2);
}
median_index->set_dtype(DataType::INT64);
median_index->set_dims(make_ddim(median_dim));
}

void ModeInferMeta(const MetaTensor& x,
int axis,
bool keepdim,
Expand Down
7 changes: 7 additions & 0 deletions paddle/phi/infermeta/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -468,6 +468,13 @@ void MaxPoolV2InferMeta(const MetaTensor& x,

void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

void MedianInferMeta(const MetaTensor& x,
const IntArray& axes,
bool keep_dim,
const std::string& mode,
MetaTensor* out,
MetaTensor* median_index);

void ModeInferMeta(const MetaTensor& x,
int axis,
bool keepdim,
Expand Down
169 changes: 169 additions & 0 deletions paddle/phi/kernels/cpu/median_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/median_grad_kernel.h"

#include <math.h>
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/nanmedian_utils.h"

namespace phi {

template <typename T>
void CalcMedianMinGrad(int64_t pre_dim,
int64_t stride,
const int64_t* m_data,
T* dx_data,
const T* dout_data) {
int64_t i = 0;
int64_t offset = 0;
for (i = 0; i < pre_dim; i++) {
if (m_data[i] >= 0) {
dx_data[offset + m_data[i]] = dout_data[i];
}
offset += stride;
}
}

template <typename T>
void CalcMedianGradEvenly(int64_t pre_dim,
int64_t stride,
const DenseTensor& x,
const T* m_data,
const int64_t* m_index,
T* dx_data,
const T* dout_data) {
int64_t i = 0, j = 0;
int64_t offset = 0;
std::vector<int64_t> data_index;
const T* x_data = x.data<T>();
for (i = 0; i < pre_dim; i++) {
data_index.clear();
for (j = 0; j < stride; j++) {
if ((m_data[i] == x_data[offset + j]) ||
(isnan(static_cast<float>(m_data[i])) &&
isnan(static_cast<float>(x_data[offset + j])))) {
data_index.push_back(offset + j);
}
}
if (data_index.size() == 0) {
if (m_index[2 * i] == m_index[2 * i + 1]) {
dx_data[offset + m_index[2 * i]] = dout_data[i];
} else {
dx_data[offset + m_index[2 * i]] = dout_data[i] / static_cast<T>(2.0);
dx_data[offset + m_index[2 * i + 1]] =
dout_data[i] / static_cast<T>(2.0);
}
} else {
for (j = 0; j < data_index.size(); j++) {
dx_data[data_index[j]] =
dout_data[i] / static_cast<T>(data_index.size());
}
}

offset += stride;
}
}

template <typename T, typename Context>
void CalcMedianGradKernel_CPU(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& median_data,
const DenseTensor& median_index,
const DenseTensor& out_grad,
const std::string& mode,
const bool evenly,
DenseTensor* x_grad) {
T* dx_data = dev_ctx.template Alloc<T>(x_grad);
if (!dx_data) return;

phi::funcs::SetConstant<Context, T> set_zero;
set_zero(dev_ctx, x_grad, static_cast<T>(0));

const int64_t* m_index = median_index.data<int64_t>();
const T* m_data = median_data.data<T>();
const T* dout_data = out_grad.data<T>();
int64_t numel = x.numel();
auto x_dim = x.dims();
int64_t rank = x_dim.size();
int64_t stride = x_dim[static_cast<int>(rank - 1)];
int64_t pre_dim = numel / stride;
if (!evenly) {
CalcMedianMinGrad(pre_dim, stride, m_index, dx_data, dout_data);
} else {
CalcMedianGradEvenly(
pre_dim, stride, x, m_data, m_index, dx_data, dout_data);
}
}

template <typename T, typename Context>
void MedianGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& median_data,
const DenseTensor& median_index,
const DenseTensor& out_grad,
const IntArray& axes,
bool keepdim UNUSED,
const std::string& mode,
DenseTensor* x_grad) {
if (x_grad && x_grad->numel() == 0) {
dev_ctx.template Alloc<T>(x_grad);
return;
}
bool evenly = (axes.size() != 1 || mode == "avg");
DenseTensor tmp_x;
auto rank = x.dims().size();
if ((axes.size() == 0) || rank <= 1) {
tmp_x = x;
tmp_x.Resize({x.numel()});
CalcMedianGradKernel_CPU<T, Context>(dev_ctx,
tmp_x,
median_data,
median_index,
out_grad,
mode,
evenly,
x_grad);
} else {
funcs::PreprocessMedianKernel<T, Context>(dev_ctx, x, axes, &tmp_x);

DenseTensor tmp_x_grad;
tmp_x_grad.Resize(x_grad->dims());
CalcMedianGradKernel_CPU<T, Context>(dev_ctx,
tmp_x,
median_data,
median_index,
out_grad,
mode,
evenly,
&tmp_x_grad);

dev_ctx.template Alloc<T>(x_grad);
funcs::PostprocessMedianGradKernel<T, Context>(
dev_ctx, &tmp_x_grad, axes, x_grad);
}
}

} // namespace phi

PD_REGISTER_KERNEL(median_grad,
CPU,
ALL_LAYOUT,
phi::MedianGradKernel,
float,
double,
int,
int64_t) {}
Loading