Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 21 additions & 11 deletions paddle/operators/reduce_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LT(
dim, x_rank,
"The dim should be in the range [-rank(input), rank(input)).");
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
auto dims_vector = vectorize(x_dims);
if (keep_dim || x_rank == 1) {
dims_vector[dim] = 1;
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
if (reduce_all) {
ctx->SetOutputDim("Out", {1});
} else {
dims_vector.erase(dims_vector.begin() + dim);
}
auto out_dims = framework::make_ddim(dims_vector);
ctx->SetOutputDim("Out", out_dims);
if (dim != 0) {
// Only pass LoD when not reducing on the first dim.
ctx->ShareLoD("X", /*->*/ "Out");
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
auto dims_vector = vectorize(x_dims);
if (keep_dim || x_rank == 1) {
dims_vector[dim] = 1;
} else {
dims_vector.erase(dims_vector.begin() + dim);
}
auto out_dims = framework::make_ddim(dims_vector);
ctx->SetOutputDim("Out", out_dims);
if (dim != 0) {
// Only pass LoD when not reducing on the first dim.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
}
};
Expand Down Expand Up @@ -95,11 +100,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) "
"If true, retain the reduced dimension with length 1.")
.SetDefault(false);
AddAttr<bool>("reduce_all",
"(bool, default false) "
"If true, output a scalar reduced along all dimensions.")
.SetDefault(false);
comment_ = R"DOC(
{ReduceOp} Operator.

This operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.

)DOC";
AddComment(comment_);
Expand Down
119 changes: 78 additions & 41 deletions paddle/operators/reduce_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,12 @@ using DDim = framework::DDim;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

struct SumFunctor {
template <typename DeviceContext, typename X, typename Y, typename Dim>
Expand Down Expand Up @@ -95,26 +97,41 @@ template <typename DeviceContext, typename T, typename Functor>
class ReduceKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceCompute<1>(context);
break;
case 2:
ReduceCompute<2>(context);
break;
case 3:
ReduceCompute<3>(context);
break;
case 4:
ReduceCompute<4>(context);
break;
case 5:
ReduceCompute<5>(context);
break;
case 6:
ReduceCompute<6>(context);
break;
bool reduce_all = context.Attr<bool>("reduce_all");
if (reduce_all) {
// Flatten and reduce 1-D tensor
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input);
auto out = EigenScalar<T>::From(*output);
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
auto reduce_dim = Eigen::array<int, 1>({{0}});
Functor functor;
functor(place, x, out, reduce_dim);
} else {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceCompute<1>(context);
break;
case 2:
ReduceCompute<2>(context);
break;
case 3:
ReduceCompute<3>(context);
break;
case 4:
ReduceCompute<4>(context);
break;
case 5:
ReduceCompute<5>(context);
break;
case 6:
ReduceCompute<6>(context);
break;
}
}
}

Expand Down Expand Up @@ -157,26 +174,46 @@ template <typename DeviceContext, typename T, typename Functor>
class ReduceGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceGradCompute<1>(context);
break;
case 2:
ReduceGradCompute<2>(context);
break;
case 3:
ReduceGradCompute<3>(context);
break;
case 4:
ReduceGradCompute<4>(context);
break;
case 5:
ReduceGradCompute<5>(context);
break;
case 6:
ReduceGradCompute<6>(context);
break;
bool reduce_all = context.Attr<bool>("reduce_all");
if (reduce_all) {
auto* input0 = context.Input<Tensor>("X");
auto* input1 = context.Input<Tensor>("Out");
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input0);
auto x_reduce = EigenVector<T>::From(*input1);
auto x_reduce_grad = EigenVector<T>::From(*input2);
auto x_grad = EigenVector<T>::Flatten(*output);
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
auto broadcast_dim =
Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
Functor functor;
functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim,
broadcast_dim[0]);
} else {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceGradCompute<1>(context);
break;
case 2:
ReduceGradCompute<2>(context);
break;
case 3:
ReduceGradCompute<3>(context);
break;
case 4:
ReduceGradCompute<4>(context);
break;
case 5:
ReduceGradCompute<5>(context);
break;
case 6:
ReduceGradCompute<6>(context);
break;
}
}
}

Expand Down
14 changes: 14 additions & 0 deletions python/paddle/v2/fluid/tests/test_reduce_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,5 +85,19 @@ def test_check_grad(self):
self.check_grad(['X'], 'Out')


class TestReduceAll(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].sum()}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], 'Out')


if __name__ == '__main__':
unittest.main()