Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
291 changes: 291 additions & 0 deletions test/distribution/test_distribution_transform_static.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import typing
import unittest

import numpy as np
Expand Down Expand Up @@ -1223,5 +1224,295 @@ def test_forward_log_det_jacobian(self):
)


def _np_softplus(x, beta=1.0, threshold=20.0):
if np.any(beta * x > threshold):
return x
return 1.0 / beta * np.log1p(np.exp(beta * x))


class TestSigmoidTransform(unittest.TestCase):
def setUp(self):
self._t = transform.SigmoidTransform()

def test_is_injective(self):
self.assertTrue(self._t._is_injective())

def test_domain(self):
self.assertTrue(isinstance(self._t._domain, variable.Real))

def test_codomain(self):
self.assertTrue(isinstance(self._t._codomain, variable.Variable))

@param.param_func(
((np.ones((5, 10)), 1 / (1 + np.exp(-np.ones((5, 10))))),)
)
@test_with_pir_api
def test_forward(self, input, expected):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.SigmoidTransform()
out = model.forward(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
np.testing.assert_allclose(
result,
expected,
rtol=config.RTOL.get(str(input.dtype)),
atol=config.ATOL.get(str(input.dtype)),
)

@param.param_func(
((np.ones(10), np.log(np.ones(10)) - np.log1p(-np.ones(10))),)
)
@test_with_pir_api
def test_inverse(self, input, expected):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.SigmoidTransform()
out = model.inverse(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
np.testing.assert_allclose(
result,
expected,
rtol=config.RTOL.get(str(input.dtype)),
atol=config.ATOL.get(str(input.dtype)),
)

@param.param_func(
(
(
np.ones(10),
-_np_softplus(-np.ones(10)) - _np_softplus(np.ones(10)),
),
)
)
@test_with_pir_api
def test_forward_log_det_jacobian(self, input, expected):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.SigmoidTransform()
out = model.forward_log_det_jacobian(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
np.testing.assert_allclose(
result,
expected,
rtol=config.RTOL.get(str(input.dtype)),
atol=config.ATOL.get(str(input.dtype)),
)

@param.param_func([((), ()), ((2, 3, 5), (2, 3, 5))])
def test_forward_shape(self, shape, expected_shape):
self.assertEqual(self._t.forward_shape(shape), expected_shape)

@param.param_func([((), ()), ((2, 3, 5), (2, 3, 5))])
def test_inverse_shape(self, shape, expected_shape):
self.assertEqual(self._t.forward_shape(shape), expected_shape)

@param.param_func([(np.array(1.0), np.array(1.0))])
@test_with_pir_api
def test_zerodim(self, input, expected):
shape = ()
if paddle.framework.in_pir_mode():
shape = []
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, 'float32')
model = transform.SigmoidTransform()
self.assertEqual(model.forward(x).shape, shape)
self.assertEqual(model.inverse(x).shape, shape)
self.assertEqual(model.forward_log_det_jacobian(x).shape, shape)
self.assertEqual(model.inverse_log_det_jacobian(x).shape, shape)
self.assertEqual(model.forward_shape(x.shape), shape)
self.assertEqual(model.inverse_shape(x.shape), shape)


class TestStickBreakingTransform(unittest.TestCase):
def setUp(self):
self._t = transform.StickBreakingTransform()

def test_is_injective(self):
self.assertTrue(self._t._is_injective())

def test_domain(self):
self.assertTrue(isinstance(self._t._domain, variable.Independent))

def test_codomain(self):
self.assertTrue(isinstance(self._t._codomain, variable.Variable))

@param.param_func(((np.random.random(10),),))
@test_with_pir_api
def test_forward(self, input):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.StickBreakingTransform()
fwd = model.forward(x)
out = model.inverse(fwd)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
np.testing.assert_allclose(
result,
input,
rtol=config.RTOL.get(str(input.dtype)),
atol=config.ATOL.get(str(input.dtype)),
)

@param.param_func([((2, 3, 5), (2, 3, 6))])
def test_forward_shape(self, shape, expected_shape):
self.assertEqual(self._t.forward_shape(shape), expected_shape)

@param.param_func([((2, 3, 5), (2, 3, 4))])
def test_inverse_shape(self, shape, expected_shape):
self.assertEqual(self._t.inverse_shape(shape), expected_shape)

@param.param_func(((np.random.random(10),),))
@test_with_pir_api
def test_forward_log_det_jacobian(self, input):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.StickBreakingTransform()
out = model.forward_log_det_jacobian(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
self.assertEqual(result.shape, ())


@param.place(config.DEVICES)
@param.param_cls(
(param.TEST_CASE_NAME, 'transforms', 'axis'),
[
('simple_one_transform', [transform.ExpTransform()], 0),
],
)
class TestStackTransform(unittest.TestCase):
def setUp(self):
self._t = transform.StackTransform(self.transforms, self.axis)

def test_is_injective(self):
self.assertTrue(self._t._is_injective())

def test_domain(self):
self.assertTrue(isinstance(self._t._domain, variable.Stack))

def test_codomain(self):
self.assertTrue(isinstance(self._t._codomain, variable.Stack))

@param.param_func(
[
(np.array([[0.0, 1.0, 2.0, 3.0]]),),
(np.array([[-5.0, 6.0, 7.0, 8.0]]),),
]
)
@test_with_pir_api
def test_forward(self, input):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.StackTransform(self.transforms, self.axis)
out = model.forward(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
self.assertEqual(tuple(result.shape), input.shape)

@param.param_func(
[
(np.array([[1.0, 2.0, 3.0]]),),
(
np.array(
[[6.0, 7.0, 8.0]],
),
),
]
)
@test_with_pir_api
def test_inverse(self, input):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.StackTransform(self.transforms, self.axis)
out = model.inverse(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
self.assertEqual(tuple(result.shape), input.shape)

@param.param_func(
[(np.array([[1.0, 2.0, 3.0]]),), (np.array([[6.0, 7.0, 8.0]]),)]
)
@test_with_pir_api
def test_forward_log_det_jacobian(self, input):
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.static.data('X', input.shape, input.dtype)
model = transform.StackTransform(self.transforms, self.axis)
out = model.forward_log_det_jacobian(x)
place = (
paddle.CUDAPlace(0)
if paddle.core.is_compiled_with_cuda()
else paddle.CPUPlace()
)
exe = paddle.static.Executor(place)
(result,) = exe.run(feed={'X': input}, fetch_list=[out])
self.assertEqual(tuple(result.shape), input.shape)

@param.param_func([((), ()), ((2, 3, 5), (2, 3, 5))])
def test_forward_shape(self, shape, expected_shape):
self.assertEqual(self._t.forward_shape(shape), expected_shape)

@param.param_func([((), ()), ((2, 3, 5), (2, 3, 5))])
def test_inverse_shape(self, shape, expected_shape):
self.assertEqual(self._t.forward_shape(shape), expected_shape)

def test_axis(self):
self.assertEqual(self._t.axis, self.axis)

@param.param_func(
[
(0, 0, TypeError),
([0], 0, TypeError),
([paddle.distribution.ExpTransform()], 'axis', TypeError),
]
)
@test_with_pir_api
def test_init_exception(self, transforms, axis, exc):
with self.assertRaises(exc):
paddle.distribution.StackTransform(transforms, axis)

@test_with_pir_api
def test_transforms(self):
self.assertIsInstance((self._t.transforms), typing.Sequence)


if __name__ == '__main__':
unittest.main()