Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions paddle/operators/adadelta_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -92,12 +92,12 @@ for gradient descent.

Adadelta updates are as follows:

$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break
paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) /
(avgSquaredGrad_out + \epsilon))}$ * grad \break
avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) *
{(paramUpdate)}^2 \break
paramOut = param + paramUpdate$$
$$
avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\
param\_update = - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\
avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\
param\_out = param + param\_update
$$

)DOC");
}
Expand Down
4 changes: 2 additions & 2 deletions paddle/operators/adagrad_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -80,8 +80,8 @@ Adaptive Gradient Algorithm (Adagrad).

The update is done as follows:

$$momentOut = moment + grad * grad \break
paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break
$$moment\_out = moment + grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
$$

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
Expand Down
12 changes: 7 additions & 5 deletions paddle/operators/adam_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -112,11 +112,13 @@ adaptive estimates of lower-order moments.

Adam updates:

$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break
moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break
learningRate = learningRate *
$\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break
paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
\frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$

)DOC");
}
Expand Down
10 changes: 6 additions & 4 deletions paddle/operators/adamax_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -107,10 +107,12 @@ Adam algorithm based on the infinity norm.

Adamax updates:

$$momentOut = \beta_1 * moment + (1 - \beta_1) * grad \break
infNormOut = max(\beta_2 * infNorm + \epsilon, |grad|) \break
learningRate = learningRate /(1 - \beta_1_{pow}) \break
paramOut = param - learningRate * momentPut / infNormOut$$
$$
moment\_out = \beta_1 * moment + (1 - \beta_1) * grad \\
inf\_norm\_out = max(\beta_2 * inf\_norm + \epsilon, |grad|) \\
learning\_rate = \frac{learning\_rate}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out}
$$

The original paper does not have an epsilon attribute.
However, it is added here for numerical stability to prevent the
Expand Down