Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -488,6 +488,9 @@ def test_create_process_group_nccl(self):
task.wait()

print("test reduce prod api ok")

test_reduce_with_zero_dim([], self.dtype, pg)

# test Scatter
# rank 0
in_shape = list(self.shape)
Expand Down Expand Up @@ -601,5 +604,88 @@ def config(self):
self.shape = (4, 20, 20)


def test_reduce_with_zero_dim(shape, dtype, pg):
# test Reduce With Zero Dim
# rank 0
x = np.random.random(shape).astype(dtype)
y = np.random.random(shape).astype(dtype)
tensor_x = paddle.to_tensor(x)
tensor_y = paddle.to_tensor(y)
sum_result = tensor_x + tensor_y
if pg.rank() == 0:
task = dist.reduce(tensor_x, 0, sync_op=True)
paddle.device.cuda.synchronize()
# rank 1
else:
task = dist.reduce(tensor_y, 0, sync_op=False)
task.wait()
paddle.device.cuda.synchronize()
if pg.rank() == 0:
assert np.array_equal(tensor_x, sum_result) and len(tensor_x.shape) == 0
print("test reduce with zero dim sum api ok\n")

# test reduce with zero dim max
# rank 0
x = np.random.random(shape).astype(dtype)
tensor_x = paddle.to_tensor(x)
# rank 1
y = np.random.random(shape).astype(dtype)
tensor_y = paddle.to_tensor(y)

max_result = paddle.maximum(tensor_x, tensor_y)

if pg.rank() == 0:
task = dist.reduce(tensor_x, 0, dist.ReduceOp.MAX, sync_op=False)
task.wait()
assert np.array_equal(tensor_x, max_result) and len(tensor_x.shape) == 0
else:
task = dist.reduce(tensor_y, 0, dist.ReduceOp.MAX, sync_op=False)
task.wait()

print("test reduce with zero dim max api ok")

# test reduce with zero dim min
# rank 0
x = np.random.random(shape).astype(dtype)
tensor_x = paddle.to_tensor(x)
# rank 1
y = np.random.random(shape).astype(dtype)
tensor_y = paddle.to_tensor(y)

min_result = paddle.minimum(tensor_x, tensor_y)

if pg.rank() == 0:
task = dist.reduce(tensor_x, 0, dist.ReduceOp.MIN, sync_op=False)
task.wait()
assert np.array_equal(tensor_x, min_result) and len(tensor_x.shape) == 0
else:
task = dist.reduce(tensor_y, 0, dist.ReduceOp.MIN, sync_op=False)
task.wait()

print("test reduce with zero dim min api ok")

# test reduce with zero dim product
# rank 0
x = np.random.random(shape).astype(dtype)
tensor_x = paddle.to_tensor(x)
# rank 1
y = np.random.random(shape).astype(dtype)
tensor_y = paddle.to_tensor(y)

prod_result = np.multiply(x, y)

if pg.rank() == 0:
task = dist.reduce(tensor_x, 0, dist.ReduceOp.PROD, sync_op=False)
task.wait()
assert (
np.array_equal(tensor_x, prod_result) and len(tensor_x.shape) == 0
)
else:
task = dist.reduce(tensor_y, 0, dist.ReduceOp.PROD, sync_op=False)
task.wait()

print("test reduce with zero dim prod api ok")


if __name__ == "__main__":
unittest.main()