Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions paddle/phi/api/yaml/legacy_backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2101,6 +2101,12 @@
optional : grad_grad_out_grad
inplace : (grad_grad_x -> fwd_grad_out_grad)

- backward_op : sign_grad
forward : sign (Tensor x) -> Tensor(out)
args : (Tensor out_grad)
output : Tensor(x_grad)
invoke : scale(out_grad, 0.0, 0.0, true)

- backward_op : silu_grad
forward : silu (Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
Expand Down
1 change: 1 addition & 0 deletions paddle/phi/api/yaml/legacy_ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2377,6 +2377,7 @@
func : UnchangedInferMeta
kernel :
func : sign
backward : sign_grad

- op : silu
args : (Tensor x)
Expand Down
78 changes: 78 additions & 0 deletions python/paddle/fluid/tests/unittests/test_sign_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,11 @@
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers


class TestSignOp(OpTest):
Expand Down Expand Up @@ -91,6 +95,80 @@ def test_static(self):
paddle.sign(input4)


class TestSignDoubleGradCheck(unittest.TestCase):

def sign_wrapper(self, x):
return paddle.sign(x[0])

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data = layers.data('data', [1, 4], False, dtype)
data.persistable = True
out = paddle.sign(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.sign_wrapper,
[data],
out,
x_init=[data_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


class TestSignTripleGradCheck(unittest.TestCase):

def sign_wrapper(self, x):
return paddle.sign(x[0])

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data = layers.data('data', [1, 4], False, dtype)
data.persistable = True
out = paddle.sign(data)
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.sign_wrapper,
[data],
out,
x_init=[data_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


if __name__ == "__main__":
paddle.enable_static()
unittest.main()