Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions paddle/phi/api/yaml/legacy_backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -800,10 +800,7 @@
forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray shape)
output : Tensor(grad_out_grad)
infer_meta :
func : ExpandInferMeta
kernel :
func : expand
invoke : expand(grad_x_grad, shape)

- backward_api : expand_grad
forward : expand (Tensor x, IntArray shape) -> Tensor(out)
Expand Down
79 changes: 78 additions & 1 deletion python/paddle/fluid/tests/unittests/test_expand_v2_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,12 @@
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid import compiler, Program, program_guard, core
import paddle
from paddle.fluid.framework import _test_eager_guard
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers


# Situation 1: shape is a list(without tensor)
Expand Down Expand Up @@ -284,6 +287,80 @@ def test_expand_times_is_tensor(self):
egr_expand_1.numpy())


class TestExpandDoubleGradCheck(unittest.TestCase):

def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

gradient_checker.double_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


class TestExpandTripleGradCheck(unittest.TestCase):

def expand_wrapper(self, x):
return paddle.expand(x[0], [2, 3])

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data = layers.data('data', [2, 3], False, dtype)
data.persistable = True
out = paddle.expand(data, [2, 3])
data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

gradient_checker.triple_grad_check([data],
out,
x_init=[data_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.triple_grad_check_for_dygraph(self.expand_wrapper,
[data],
out,
x_init=[data_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


if __name__ == "__main__":
paddle.enable_static()
unittest.main()