Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 1 addition & 5 deletions paddle/phi/api/yaml/legacy_backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -430,11 +430,7 @@
forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
args : (Tensor[] grad_x_grad, Scalar axis = 0)
output : Tensor(grad_out_grad)
infer_meta :
func : ConcatInferMeta
param : [grad_x_grad, axis]
kernel :
func : concat
invoke : concat(grad_x_grad, axis)

- backward_api : concat_grad
forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
Expand Down
81 changes: 81 additions & 0 deletions python/paddle/fluid/tests/unittests/test_concat_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,9 @@
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.framework import _test_eager_guard
import paddle
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers


class TestConcatOp(OpTest):
Expand Down Expand Up @@ -451,5 +454,83 @@ def _run_static_mode(self, use_fluid_api):
res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis))


class TestConcatDoubleGradCheck(unittest.TestCase):

def concat_wrapper(self, x):
return paddle.concat(x)

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data1 = layers.data('data1', [2, 3], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2])
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):

def concat_wrapper(self, x):
return paddle.concat(x, 1)

@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
eps = 0.005
dtype = np.float32

data1 = layers.data('data1', [2, 3, 4], False, dtype)
data1.persistable = True
data2 = layers.data('data2', [2, 3, 4], False, dtype)
data2.persistable = True
out = paddle.concat([data1, data2], 1)
data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
gradient_checker.double_grad_check([data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place,
eps=eps)
fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
gradient_checker.double_grad_check_for_dygraph(
self.concat_wrapper, [data1, data2],
out,
x_init=[data1_arr, data2_arr],
place=place)

def test_grad(self):
paddle.enable_static()
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)


if __name__ == '__main__':
unittest.main()