-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add INT8 support for fused_multi_transformer_op #45284
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 19 commits
6a84086
139ec0d
51315d6
5674acc
ce00ad9
d5b00da
df2d3a0
30b2c3d
44e1e46
ef3ef70
c42512a
f26e42b
cb31f82
1422b17
2a967fd
07fc384
117f588
4392807
dfa79a3
9323569
a6038ba
9672af1
4794a24
2524c63
d134702
991fff6
c1c22c6
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,176 @@ | ||
| /* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #pragma once | ||
|
|
||
| #include <iostream> | ||
| #include <vector> | ||
| #include "paddle/fluid/operators/fused/cublaslt.h" | ||
| #include "paddle/fluid/operators/fused/quant_dequant_kernel.h" | ||
| #include "paddle/fluid/platform/device/gpu/gpu_info.h" | ||
| #include "paddle/fluid/platform/float16.h" | ||
| #include "paddle/phi/kernels/funcs/broadcast_function.h" | ||
| #include "paddle/phi/kernels/funcs/elementwise_functor.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| using Tensor = framework::Tensor; | ||
|
|
||
| template <typename T> | ||
| class AttnMatmulINT8 { | ||
| public: | ||
| AttnMatmulINT8( | ||
| const phi::GPUContext& dev_ctx, int m, int n, int k, bool compute_bias) | ||
| : dev_ctx_(dev_ctx), m_(m), n_(n), k_(k), compute_bias_(compute_bias) { | ||
| auto helper = std::make_shared<CublasLtHelper>(m, k, n); | ||
| helpers_.emplace_back(helper); | ||
| } | ||
| ~AttnMatmulINT8() {} | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里命名INT8的话,上面Q命名也改成INT8
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. DONE. As for the fused layernorm-quantization kernel, I am still trying to git rid of the redundant code. |
||
|
|
||
| // This function is used to execute GEMM, with input and output's types are | ||
| // both T. | ||
| void ComputeForward(const framework::Tensor* weight, | ||
| const framework::Tensor* input, | ||
| framework::Tensor* input_tmp, | ||
| const framework::Tensor* bias, | ||
| framework::Tensor* output, | ||
| framework::Tensor* output_tmp, | ||
| framework::Tensor* bias_out, | ||
| const float quant_in_scale_data, | ||
| const framework::Tensor* quant_out_scale, | ||
| const int quant_out_scale_offset) { | ||
| int m = m_, k = k_, n = n_; | ||
|
||
|
|
||
| quantize_kernel_launcher<T>(input->data<T>(), | ||
| input_tmp->data<int8_t>(), | ||
| quant_in_scale_data, | ||
| m_, | ||
| k_, | ||
| dev_ctx_.stream()); | ||
|
|
||
| helpers_[0]->GEMM(input_tmp->data<int8_t>(), | ||
| weight->data<int8_t>(), | ||
| output_tmp->data<int32_t>(), | ||
| dev_ctx_.stream()); | ||
|
|
||
| dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(), | ||
| output->data<T>(), | ||
| m_, | ||
| n_, | ||
| dev_ctx_.stream(), | ||
| quant_in_scale_data, | ||
| quant_out_scale->data<float>(), | ||
| quant_out_scale_offset); | ||
|
|
||
| if (compute_bias_) { | ||
| // bias_out = output + bias | ||
| std::vector<const framework::Tensor*> ins = {output, bias}; | ||
| std::vector<framework::Tensor*> outs = {bias_out}; | ||
| phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>( | ||
| dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>()); | ||
| PADDLE_ENFORCE_EQ( | ||
| cudaGetLastError(), cudaSuccess, platform::errors::Fatal("Add")); | ||
| } | ||
| } | ||
|
|
||
| // This function is used to execute GEMM, with input and output's types are | ||
| // both INT8. | ||
| void ComputeForwardINT8ToINT8(const framework::Tensor* weight, | ||
| framework::Tensor* input, | ||
| const framework::Tensor* bias, | ||
| framework::Tensor* output, | ||
| framework::Tensor* bias_out) { | ||
| int m = m_, k = k_, n = n_; | ||
|
|
||
| helpers_[0]->GEMM(input->data<int8_t>(), | ||
| weight->data<int8_t>(), | ||
| output->data<int32_t>(), | ||
| dev_ctx_.stream()); | ||
| } | ||
|
|
||
| // This function is used to execute GEMM, with input and output's types are | ||
| // INT8 and T. | ||
| void ComputeForwardINT8ToT(const framework::Tensor* weight, | ||
| const float quant_in_scale_data, | ||
| framework::Tensor* input, | ||
| const framework::Tensor* bias, | ||
| framework::Tensor* output, | ||
| framework::Tensor* output_tmp, | ||
| framework::Tensor* bias_out, | ||
| const framework::Tensor* quant_out_scale, | ||
| const int quant_out_scale_offset) { | ||
| int m = m_, k = k_, n = n_; | ||
|
|
||
| helpers_[0]->GEMM(input->data<int8_t>(), | ||
| weight->data<int8_t>(), | ||
| output_tmp->data<int32_t>(), | ||
| dev_ctx_.stream()); | ||
|
|
||
| dequantize_kernel_launcher<T>(output_tmp->data<int32_t>(), | ||
| output->data<T>(), | ||
| m_, | ||
| n_, | ||
| dev_ctx_.stream(), | ||
| quant_in_scale_data, | ||
| quant_out_scale->data<float>(), | ||
| quant_out_scale_offset); | ||
|
|
||
| if (compute_bias_) { | ||
| // bias_out = output + bias | ||
| std::vector<const framework::Tensor*> ins = {output, bias}; | ||
| std::vector<framework::Tensor*> outs = {bias_out}; | ||
| phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>( | ||
| dev_ctx_, ins, &outs, -1, phi::funcs::AddFunctor<T>()); | ||
| PADDLE_ENFORCE_EQ( | ||
| cudaGetLastError(), cudaSuccess, platform::errors::Fatal("Add")); | ||
| } | ||
| } | ||
|
|
||
| // This function is used to execute GEMM, with input and output's types are T | ||
| // and INT8. | ||
| void ComputeForwardTToINT8(const framework::Tensor* weight, | ||
| const float quant_in_scale_data, | ||
| const framework::Tensor* input, | ||
| framework::Tensor* input_tmp, | ||
| const framework::Tensor* bias, | ||
| framework::Tensor* output, | ||
| framework::Tensor* bias_out) { | ||
| int m = m_, k = k_, n = n_; | ||
| quantize_kernel_launcher<T>(input->data<T>(), | ||
| input_tmp->data<int8_t>(), | ||
| quant_in_scale_data, | ||
| m_, | ||
| k_, | ||
| dev_ctx_.stream()); | ||
|
|
||
| helpers_[0]->GEMM(input_tmp->data<int8_t>(), | ||
| weight->data<int8_t>(), | ||
| output->data<int32_t>(), | ||
| dev_ctx_.stream()); | ||
| } | ||
|
|
||
| private: | ||
| const phi::GPUContext& dev_ctx_; | ||
|
|
||
| int m_; // m | ||
| int n_; // n | ||
| int k_; // k | ||
|
|
||
| int compute_bias_; | ||
| std::vector<std::shared_ptr<CublasLtHelper>> helpers_; | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
如果不是指针,直接命名为
quant_in_scale?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
已修改