-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add max pool op (with index) #4461
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 7 commits
6326c40
bee95fc
6fc4480
2ed56df
bb33c2b
14b2c98
fcfce48
6c6474c
e21e564
36da825
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -75,6 +75,13 @@ function(op_library TARGET) | |
| file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n") | ||
| endif() | ||
|
|
||
| # pool_with_index_op contains several operators | ||
| if ("${TARGET}" STREQUAL "pool_with_index_op") | ||
| set(pybind_flag 1) | ||
| # It's enough to just adding one operator to pybind | ||
| file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n") | ||
|
||
| endif() | ||
|
|
||
| # pybind USE_NO_KERNEL_OP | ||
| file(READ ${TARGET}.cc TARGET_CONTENT) | ||
| string(REGEX MATCH "OperatorWithKernel" regex_result "${TARGET_CONTENT}") | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -458,6 +458,233 @@ template class Pool3dGradFunctor< | |
| platform::CPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>; | ||
| template class Pool3dGradFunctor< | ||
| platform::CPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>; | ||
|
|
||
| template <typename T> | ||
| class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Need to add some comments about these functors, like "Input order NCHW or NHWC" Please take a glance at https://google.github.io/styleguide/cppguide.html#Function_Comments
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. Thx !!! |
||
| public: | ||
| void operator()(const platform::DeviceContext& context, | ||
| const framework::Tensor& input, framework::Tensor& output, | ||
| framework::Tensor& mask, std::vector<int>& ksize, | ||
| std::vector<int>& strides, std::vector<int>& paddings) { | ||
| const int batch_size = input.dims()[0]; | ||
| const int input_height = input.dims()[2]; | ||
| const int input_width = input.dims()[3]; | ||
| const int output_channels = output.dims()[1]; | ||
| const int output_height = output.dims()[2]; | ||
| const int output_width = output.dims()[3]; | ||
| const int ksize_height = ksize[0]; | ||
| const int ksize_width = ksize[1]; | ||
| const int stride_height = strides[0]; | ||
| const int stride_width = strides[1]; | ||
| const int padding_height = paddings[0]; | ||
| const int padding_width = paddings[1]; | ||
| const int input_stride = input_height * input_width; | ||
| const int output_stride = output_height * output_width; | ||
|
|
||
| const T* input_data = input.data<T>(); | ||
| T* output_data = output.mutable_data<T>(context.GetPlace()); | ||
| T* mask_data = mask.mutable_data<T>(context.GetPlace()); | ||
|
|
||
| for (int i = 0; i < batch_size; i++) { | ||
| for (int c = 0; c < output_channels; ++c) { | ||
| for (int ph = 0; ph < output_height; ++ph) { | ||
| int hstart = ph * stride_height - padding_height; | ||
| int hend = std::min(hstart + ksize_height, input_height); | ||
| hstart = std::max(hstart, 0); | ||
| for (int pw = 0; pw < output_width; ++pw) { | ||
| int wstart = pw * stride_width - padding_width; | ||
| int wend = std::min(wstart + ksize_width, input_width); | ||
| wstart = std::max(wstart, 0); | ||
|
|
||
| T ele = static_cast<T>(-FLT_MAX); | ||
| int index = -1; | ||
| for (int h = hstart; h < hend; ++h) { | ||
| for (int w = wstart; w < wend; ++w) { | ||
| if (ele < input_data[h * input_width + w]) { | ||
| ele = input_data[h * input_width + w]; | ||
| index = h * input_width + w; | ||
| } | ||
| } | ||
| } | ||
| output_data[ph * output_width + pw] = ele; | ||
| mask_data[ph * output_width + pw] = index; | ||
| } | ||
| } | ||
| // offset | ||
| input_data += input_stride; | ||
| output_data += output_stride; | ||
| mask_data += output_stride; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> { | ||
| public: | ||
| void operator()(const platform::DeviceContext& context, | ||
| framework::Tensor& input_grad, | ||
| const framework::Tensor& output_grad, | ||
| const framework::Tensor& mask, std::vector<int>& ksize, | ||
| std::vector<int>& strides, std::vector<int>& paddings) { | ||
| const int batch_size = input_grad.dims()[0]; | ||
| const int input_height = input_grad.dims()[2]; | ||
| const int input_width = input_grad.dims()[3]; | ||
| const int output_channels = output_grad.dims()[1]; | ||
| const int output_height = output_grad.dims()[2]; | ||
| const int output_width = output_grad.dims()[3]; | ||
| const int input_stride = input_height * input_width; | ||
| const int output_stride = output_height * output_width; | ||
|
|
||
| const T* mask_data = mask.data<T>(); | ||
| const T* output_grad_data = output_grad.data<T>(); | ||
| T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); | ||
|
|
||
| for (int n = 0; n < batch_size; ++n) { | ||
| for (int c = 0; c < output_channels; ++c) { | ||
| for (int ph = 0; ph < output_height; ++ph) { | ||
| for (int pw = 0; pw < output_width; ++pw) { | ||
| const int output_idx = ph * output_width + pw; | ||
| const int input_idx = static_cast<int>(mask_data[output_idx]); | ||
| input_grad_data[input_idx] += output_grad_data[output_idx]; | ||
| } | ||
| } | ||
| // offset | ||
| input_grad_data += input_stride; | ||
| output_grad_data += output_stride; | ||
| mask_data += output_stride; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template class MaxPool2dWithIndexFunctor<platform::CPUPlace, float>; | ||
| template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, float>; | ||
| template class MaxPool2dWithIndexFunctor<platform::CPUPlace, double>; | ||
| template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, double>; | ||
|
|
||
| template <typename T> | ||
| class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> { | ||
| public: | ||
| void operator()(const platform::DeviceContext& context, | ||
| const framework::Tensor& input, framework::Tensor& output, | ||
| framework::Tensor& mask, std::vector<int>& ksize, | ||
| std::vector<int>& strides, std::vector<int>& paddings) { | ||
| const int batch_size = input.dims()[0]; | ||
| const int input_depth = input.dims()[2]; | ||
| const int input_height = input.dims()[3]; | ||
| const int input_width = input.dims()[4]; | ||
| const int output_channels = output.dims()[1]; | ||
| const int output_depth = output.dims()[2]; | ||
| const int output_height = output.dims()[3]; | ||
| const int output_width = output.dims()[4]; | ||
| const int ksize_depth = ksize[0]; | ||
| const int ksize_height = ksize[1]; | ||
| const int ksize_width = ksize[2]; | ||
| const int stride_depth = strides[0]; | ||
| const int stride_height = strides[1]; | ||
| const int stride_width = strides[2]; | ||
| const int padding_depth = paddings[0]; | ||
| const int padding_height = paddings[1]; | ||
| const int padding_width = paddings[2]; | ||
| const int input_stride = input_depth * input_height * input_width; | ||
| const int output_stride = output_depth * output_height * output_width; | ||
|
|
||
| const T* input_data = input.data<T>(); | ||
| T* output_data = output.mutable_data<T>(context.GetPlace()); | ||
| T* mask_data = mask.mutable_data<T>(context.GetPlace()); | ||
|
|
||
| for (int i = 0; i < batch_size; i++) { | ||
| for (int c = 0; c < output_channels; ++c) { | ||
| for (int pd = 0; pd < output_depth; ++pd) { | ||
| int dstart = pd * stride_depth - padding_depth; | ||
| int dend = std::min(dstart + ksize_depth, input_depth); | ||
| dstart = std::max(dstart, 0); | ||
| for (int ph = 0; ph < output_height; ++ph) { | ||
| int hstart = ph * stride_height - padding_height; | ||
| int hend = std::min(hstart + ksize_height, input_height); | ||
| hstart = std::max(hstart, 0); | ||
| for (int pw = 0; pw < output_width; ++pw) { | ||
| int wstart = pw * stride_width - padding_width; | ||
| int wend = std::min(wstart + ksize_width, input_width); | ||
| wstart = std::max(wstart, 0); | ||
|
|
||
| int output_idx = (pd * output_height + ph) * output_width + pw; | ||
| T ele = static_cast<T>(-FLT_MAX); | ||
| int index = -1; | ||
| for (int d = dstart; d < dend; ++d) { | ||
| for (int h = hstart; h < hend; ++h) { | ||
| for (int w = wstart; w < wend; ++w) { | ||
| int input_idx = (d * input_height + h) * input_width + w; | ||
| if (ele < input_data[input_idx]) { | ||
| index = input_idx; | ||
| ele = input_data[input_idx]; | ||
| } | ||
| } | ||
| } | ||
| } | ||
| output_data[output_idx] = ele; | ||
| mask_data[output_idx] = index; | ||
| } | ||
| } | ||
| } | ||
| // offset | ||
| input_data += input_stride; | ||
| output_data += output_stride; | ||
| mask_data += output_stride; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> { | ||
| public: | ||
| void operator()(const platform::DeviceContext& context, | ||
| framework::Tensor& input_grad, | ||
| const framework::Tensor& output_grad, | ||
| const framework::Tensor& mask, std::vector<int>& ksize, | ||
| std::vector<int>& strides, std::vector<int>& paddings) { | ||
| const int batch_size = input_grad.dims()[0]; | ||
| const int input_depth = input_grad.dims()[2]; | ||
| const int input_height = input_grad.dims()[3]; | ||
| const int input_width = input_grad.dims()[4]; | ||
| const int output_channels = output_grad.dims()[1]; | ||
| const int output_depth = output_grad.dims()[2]; | ||
| const int output_height = output_grad.dims()[3]; | ||
| const int output_width = output_grad.dims()[4]; | ||
| const int input_stride = input_depth * input_height * input_width; | ||
| const int output_stride = output_depth * output_height * output_width; | ||
|
|
||
| const T* mask_data = mask.data<T>(); | ||
| const T* output_grad_data = output_grad.data<T>(); | ||
| T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace()); | ||
|
|
||
| for (int n = 0; n < batch_size; ++n) { | ||
| for (int c = 0; c < output_channels; ++c) { | ||
| for (int pd = 0; pd < output_depth; ++pd) { | ||
| for (int ph = 0; ph < output_height; ++ph) { | ||
| for (int pw = 0; pw < output_width; ++pw) { | ||
| const int output_idx = | ||
| (pd * output_height + ph) * output_width + pw; | ||
| const int input_idx = static_cast<int>(mask_data[output_idx]); | ||
| input_grad_data[input_idx] += output_grad_data[output_idx]; | ||
| } | ||
| } | ||
| } | ||
| // offset | ||
| input_grad_data += input_stride; | ||
| output_grad_data += output_stride; | ||
| mask_data += output_stride; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template class MaxPool3dWithIndexFunctor<platform::CPUPlace, float>; | ||
| template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, float>; | ||
| template class MaxPool3dWithIndexFunctor<platform::CPUPlace, double>; | ||
| template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, double>; | ||
| } // namespace math | ||
| } // namespace operators | ||
| } // namespace paddle | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This comment does not make clear why need add another name to this operator. See above comments, like:
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done