-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add margin rank loss operator #4285
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 4 commits
79c2d90
2f12256
6b3e9cc
756af4e
dc186af
bc2e26e
e303897
4db50fb
240adef
13b7d92
989e19c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,114 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/operators/margin_rank_loss_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| class MarginRankLossOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(const framework::InferShapeContext &ctx) const override { | ||
| // input check | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), | ||
| "Input(Label) shouldn't be null"); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null"); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null"); | ||
| auto label_dims = ctx.Input<framework::Tensor>("Label")->dims(); | ||
| auto x1_dims = ctx.Input<framework::Tensor>("X1")->dims(); | ||
| auto x2_dims = ctx.Input<framework::Tensor>("X2")->dims(); | ||
| PADDLE_ENFORCE((label_dims == x1_dims) && (x1_dims == x2_dims) && | ||
| (label_dims.size() == 2) && (label_dims[1] == 1), | ||
| "All inputs must be vector with the same size"); | ||
|
||
| ctx.Output<framework::LoDTensor>("Activated")->Resize(label_dims); | ||
| ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims); | ||
|
||
| } | ||
| }; | ||
|
|
||
| template <typename AttrType> | ||
| class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| MarginRankLossOpMaker(framework::OpProto *proto, | ||
| framework::OpAttrChecker *op_checker) | ||
| : OpProtoAndCheckerMaker(proto, op_checker) { | ||
| AddInput("X1", "The first variable to be ranked, row vector."); | ||
|
||
| AddInput("X2", "The second variable to be ranked, row vector."); | ||
|
||
| AddInput("Label", | ||
| "The label indicating X1 ranked higher than X2 " | ||
| "or not, row vector."); | ||
|
||
| AddAttr<AttrType>("margin", "Margin for MarginRankLossOp, scalar.") | ||
|
||
| .SetDefault(0); | ||
|
||
| AddOutput("Activated", | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please fix the doc by following: (type, default value) usage style.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
| "Intermediate tensor to indicate whether each element of " | ||
| "Output(Out) is activated.") | ||
| .AsIntermediate(); | ||
| AddOutput("Out", "The output loss of MarginRankLoss operator"); | ||
|
||
| AddComment(R"DOC( | ||
|
|
||
| MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`} | ||
| and the `Label` with attribute `margin`, where `Label = 1` indicating X1 is | ||
| ranked higher than `X2`, otherwise `Label = -1`. The loss turns out | ||
|
||
|
|
||
| loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin) | ||
|
||
|
|
||
| For batch input, `X1`, `X2` and `Label` all have the same size batch_size x 1. | ||
|
|
||
| )DOC"); | ||
| } | ||
| }; | ||
|
|
||
| class MarginRankLossGradOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(const framework::InferShapeContext &ctx) const override { | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"), | ||
| "Input(Label) shouldn't be null."); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null."); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null."); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), | ||
| "Input(Out@GRAD) shouldn't be null."); | ||
| PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Activated"), | ||
| "Intermediate(Activated) shouldn't be null."); | ||
| auto dims = ctx.Input<framework::Tensor>("X1")->dims(); | ||
| auto *x1_grad = | ||
| ctx.Output<framework::LoDTensor>(framework::GradVarName("X1")); | ||
| auto *x2_grad = | ||
| ctx.Output<framework::LoDTensor>(framework::GradVarName("X2")); | ||
| if (x1_grad) { | ||
| x1_grad->Resize(dims); | ||
| } | ||
| if (x2_grad) { | ||
| x2_grad->Resize(dims); | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
| namespace ops = paddle::operators; | ||
|
|
||
| REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp, | ||
| ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad, | ||
| ops::MarginRankLossGradOp); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| margin_rank_loss, | ||
| ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| margin_rank_loss_grad, | ||
| ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>); | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,24 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/operators/margin_rank_loss_op.h" | ||
|
|
||
| namespace ops = paddle::operators; | ||
|
|
||
| REGISTER_OP_GPU_KERNEL( | ||
| margin_rank_loss, | ||
| ops::MarginRankLossKernel<paddle::platform::GPUPlace, float>); | ||
| REGISTER_OP_GPU_KERNEL( | ||
| margin_rank_loss_grad, | ||
| ops::MarginRankLossGradKernel<paddle::platform::GPUPlace, float>); |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,106 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #pragma once | ||
|
|
||
| #include "paddle/framework/eigen.h" | ||
| #include "paddle/framework/op_registry.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| template <typename T> | ||
| struct ReLU { | ||
| HOSTDEVICE T operator()(const T& val) const { | ||
| if (val < 0) { | ||
| return static_cast<T>(0); | ||
| } else { | ||
| return val; | ||
| } | ||
|
||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| struct Heaviside { | ||
| HOSTDEVICE T operator()(const T& val) const { | ||
| if (val > 0) { | ||
| return static_cast<T>(1); | ||
| } else { | ||
| return static_cast<T>(0); | ||
| } | ||
| } | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. return static_cast<T>(val > 0 ? 1 : 0);
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done |
||
| }; | ||
|
|
||
| template <typename Place, typename T, typename AttrType = T> | ||
| class MarginRankLossKernel : public framework::OpKernel { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const { | ||
| auto* out_t = ctx.Output<framework::Tensor>("Out"); | ||
| auto* act_t = ctx.Output<framework::Tensor>("Activated"); | ||
|
|
||
| auto* label_t = ctx.Input<framework::Tensor>("Label"); | ||
| auto* x1_t = ctx.Input<framework::Tensor>("X1"); | ||
| auto* x2_t = ctx.Input<framework::Tensor>("X2"); | ||
|
|
||
| out_t->mutable_data<T>(ctx.GetPlace()); | ||
| act_t->mutable_data<T>(ctx.GetPlace()); | ||
|
|
||
| auto margin = static_cast<T>(ctx.Attr<AttrType>("margin")); | ||
| auto out = framework::EigenVector<T>::Flatten(*out_t); | ||
| auto act = framework::EigenVector<T>::Flatten(*act_t); | ||
|
|
||
| auto label = framework::EigenVector<T>::Flatten(*label_t); | ||
| auto x1 = framework::EigenVector<T>::Flatten(*x1_t); | ||
| auto x2 = framework::EigenVector<T>::Flatten(*x2_t); | ||
|
|
||
| auto& dev = ctx.GetEigenDevice<Place>(); | ||
| out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>()); | ||
| act.device(dev) = out.unaryExpr(Heaviside<T>()); | ||
| } | ||
| }; | ||
|
|
||
| template <typename Place, typename T> | ||
| class MarginRankLossGradKernel : public framework::OpKernel { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const { | ||
| auto* d_x1_t = | ||
| ctx.Output<framework::LoDTensor>(framework::GradVarName("X1")); | ||
| auto* d_x2_t = | ||
| ctx.Output<framework::LoDTensor>(framework::GradVarName("X2")); | ||
|
|
||
| auto* act_t = ctx.Input<framework::Tensor>("Activated"); | ||
| auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
| auto* label_t = ctx.Input<framework::Tensor>("Label"); | ||
|
|
||
| auto d_out = framework::EigenVector<T>::Flatten(*d_out_t); | ||
| auto act = framework::EigenVector<T>::Flatten(*act_t); | ||
| auto label = framework::EigenVector<T>::Flatten(*label_t); | ||
| auto& dev = ctx.GetEigenDevice<Place>(); | ||
|
|
||
| // compute d_x1 | ||
| if (d_x1_t) { | ||
| d_x1_t->mutable_data<T>(ctx.GetPlace()); | ||
| auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t); | ||
| d_x1.device(dev) = -d_out * act * label; | ||
| } | ||
| // compute d_x2 | ||
| if (d_x2_t) { | ||
| d_x2_t->mutable_data<T>(ctx.GetPlace()); | ||
| auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t); | ||
| d_x2.device(dev) = d_out * act * label; | ||
| } | ||
| } | ||
| }; | ||
| } // namespace operators | ||
| } // namespace paddle | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,39 @@ | ||
| import unittest | ||
| import numpy as np | ||
| from op_test import OpTest | ||
|
|
||
|
|
||
| class TestMarginRankLossOp(OpTest): | ||
| def setUp(self): | ||
| self.op_type = "margin_rank_loss" | ||
| batch_size = 5 | ||
| margin = 0.5 | ||
| # labels_{i} = {-1, 1} | ||
| label = 2 * np.random.randint( | ||
| 0, 2, size=(batch_size, 1)).astype("float32") - 1 | ||
| x1 = np.random.random((batch_size, 1)).astype("float32") | ||
| x2 = np.random.random((batch_size, 1)).astype("float32") | ||
| # loss = max(0, -label * (x1 - x2) + margin) | ||
| loss = -label * (x1 - x2) + margin | ||
| loss = np.where(loss > 0, loss, 0) | ||
| act = np.where(loss > 0, 1., 0.) | ||
|
|
||
| self.attrs = {'margin': margin} | ||
| self.inputs = {'Label': label, 'X1': x1, 'X2': x2} | ||
| self.outputs = {'Activated': act, 'Out': loss} | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output() | ||
|
|
||
| def test_check_grad(self): | ||
| self.check_grad(["X1", "X2"], "Out") | ||
|
|
||
| def test_check_grad_ignore_x1(self): | ||
| self.check_grad(["X2"], "Out", no_grad_set=set('X1')) | ||
|
|
||
| def test_check_grad_ignore_x2(self): | ||
| self.check_grad(["X1"], "Out", no_grad_set=set('X2')) | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Should here also check the output Var "Out" is not null?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done