Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 47 additions & 30 deletions paddle/fluid/operators/fused/fused_attention_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,8 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
"FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
"FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
"FusedAttentionOp");

if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
Expand All @@ -54,8 +50,10 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
// qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
"FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
"FusedAttentionOp");
if (ctx->HasInput("QKVBias")) {
OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
"FusedAttentionOp");
}
OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
"FusedAttentionOp");
OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
Expand Down Expand Up @@ -107,6 +105,13 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
"input qkv_weight = [%s]",
x_dim, y_dim));

PADDLE_ENFORCE_EQ(y_dim[1] * y_dim[2], y_dim[3],
platform::errors::InvalidArgument(
"The dimensions of qkv_weight must be 4"
"(3, num_head, dim_head, dim_embed),"
"and must satisfy the limitations: "
"(num_head * dim_head == dim_embed)"));

if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
Expand All @@ -119,8 +124,11 @@ class FusedAttentionOp : public framework::OperatorWithKernel {
// [batch_size, seq_len, 3, num_head, head_size]
ctx->SetOutputDim("QKVOut",
{x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
ctx->SetOutputDim("QKVBiasOut",
{x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});

if (ctx->HasInput("QKVBias")) {
ctx->SetOutputDim("QKVBiasOut",
{x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
}
// [3, batch_size, num_head, seq_len, head_size]
ctx->SetOutputDim("TransposeOut2",
{y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
Expand Down Expand Up @@ -173,11 +181,11 @@ class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
"H. Here, H represents the last dimension of its input tensor.")
.AsDispensable();
AddInput("QKVW", "The qkv weight tensor.");
AddInput("QKVBias", "The qkv bias tensor.");
AddInput("QKVBias", "The qkv bias tensor.").AsDispensable();
AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
.AsDispensable();
AddInput("OutLinearW", "The out_linear weight tensor.");
AddInput("OutLinearBias", "The out_linear bias tensor.");
AddInput("OutLinearBias", "The out_linear bias tensor.").AsDispensable();
AddInput("Ln2Scale",
"(optional) Scale is a 1-dimensional tensor of size "
"H. Here, H represents the last dimension of its input tensor.")
Expand Down Expand Up @@ -379,12 +387,8 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW",
"FusedAttentionGrad");
OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
"FusedAttentionGrad");
OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
"FusedAttentionGrad");
OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
"FusedAttentionGrad");

if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
Expand All @@ -399,14 +403,17 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
ctx->GetInputDim("OutLinearBias"));
if (ctx->HasOutput(framework::GradVarName("OutLinearBias"))) {
ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
ctx->GetInputDim("OutLinearBias"));
}
ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
ctx->GetInputDim("OutLinearW"));
ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
ctx->SetOutputDim(framework::GradVarName("QKVBias"),
ctx->GetInputDim("QKVBias"));
if (ctx->HasOutput(framework::GradVarName("QKVBias"))) {
ctx->SetOutputDim(framework::GradVarName("QKVBias"),
ctx->GetInputDim("QKVBias"));
}

if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
ctx->SetOutputDim(framework::GradVarName("LnOut"),
Expand Down Expand Up @@ -434,8 +441,10 @@ class FusedAttentionGradOp : public framework::OperatorWithKernel {
}
ctx->SetOutputDim(framework::GradVarName("QKVOut"),
ctx->GetInputDim("QKVOut"));
ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
ctx->GetInputDim("QKVBiasOut"));
if (ctx->HasOutput(framework::GradVarName("QKVBiasOut"))) {
ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
ctx->GetInputDim("QKVBiasOut"));
}
ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
ctx->GetInputDim("OutLinearOut"));
}
Expand All @@ -462,7 +471,15 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
// inputs x, parameters and their grad.
op->SetInput("X", this->Input("X"));
op->SetInput("QKVW", this->Input("QKVW"));
op->SetInput("QKVBias", this->Input("QKVBias"));

if (this->HasInput("QKVBias")) {
op->SetInput("QKVBias", this->Input("QKVBias"));
op->SetOutput(framework::GradVarName("QKVBias"),
this->InputGrad("QKVBias"));
op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
op->SetOutput(framework::GradVarName("QKVBiasOut"),
this->OutputGrad("QKVBiasOut"));
}

if (this->HasInput("SrcMask")) {
op->SetInput("SrcMask", this->Input("SrcMask"));
Expand All @@ -472,7 +489,11 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
}

op->SetInput("OutLinearW", this->Input("OutLinearW"));
op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
if (this->HasInput("OutLinearBias")) {
op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
op->SetOutput(framework::GradVarName("OutLinearBias"),
this->InputGrad("OutLinearBias"));
}

op->SetAttrMap(this->Attrs());
bool is_pre_layer_norm =
Expand Down Expand Up @@ -503,10 +524,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {

op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
op->SetOutput(framework::GradVarName("QKVBias"),
this->InputGrad("QKVBias"));
op->SetOutput(framework::GradVarName("OutLinearBias"),
this->InputGrad("OutLinearBias"));

op->SetOutput(framework::GradVarName("OutLinearW"),
this->InputGrad("OutLinearW"));

Expand All @@ -528,7 +546,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
this->Output("BiasDropoutResidualOut"));
}
op->SetInput("QKVOut", this->Output("QKVOut"));
op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));

op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
op->SetInput("QKOut", this->Output("QKOut"));
op->SetInput("QKTVOut", this->Output("QKTVOut"));
Expand All @@ -553,8 +571,7 @@ class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
}

op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
op->SetOutput(framework::GradVarName("QKVBiasOut"),
this->OutputGrad("QKVBiasOut"));

op->SetOutput(framework::GradVarName("QKTVOut"),
this->OutputGrad("QKTVOut"));
op->SetOutput(framework::GradVarName("TransposeOut2"),
Expand Down
107 changes: 76 additions & 31 deletions paddle/fluid/operators/fused/fused_attention_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -96,9 +96,11 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {

auto *x_data = input_x->data<T>();
auto *qkv_weight_data = qkv_weight->data<T>();
auto *qkv_bias_data = qkv_bias->data<T>();
auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
auto *qkv_out_data = qkv_out->mutable_data<T>(ctx.GetPlace());
auto *qkv_bias_out_data = qkv_bias_out->mutable_data<T>(ctx.GetPlace());
auto *qkv_bias_out_data =
(qkv_bias == nullptr) ? nullptr
: qkv_bias_out->mutable_data<T>(ctx.GetPlace());

// get data ptr for FMHA.
auto *transpose_out_2_data =
Expand All @@ -117,7 +119,8 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {

// get data ptr for out_linear.
auto *out_linear_weight_data = out_linear_weight->data<T>();
auto *out_linear_bias_data = out_linear_bias->data<T>();
auto *out_linear_bias_data =
(out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();
auto *out_linear_out_data = out_linear_out->mutable_data<T>(ctx.GetPlace());

// get data ptr for bias+dropout+residual+layernorm
Expand All @@ -139,9 +142,15 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {

auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
epsilon, bsz_seq, dim_embed);

bool compute_bias = true;
if (qkv_bias == nullptr) {
compute_bias = false;
}
// (transA, transB, compute_bias) = (false, true, true)
auto qkv_compute = AttnMatMul<T>(ctx.cuda_device_context(), false, true,
bsz_seq, output_size, input_size, true);
auto qkv_compute =
AttnMatMul<T>(ctx.cuda_device_context(), false, true, bsz_seq,
output_size, input_size, compute_bias);

AttnDropoutParam attn_dropout_param(
is_test_1, dropout_implementation_1, attn_dropout_rate,
Expand Down Expand Up @@ -176,10 +185,17 @@ class FusedAttentionOpKernel : public framework::OpKernel<T> {
qkv_compute.ComputeForward(qkv_weight, input_x, qkv_bias, qkv_out,
qkv_bias_out);
}
fmha_ref_compute.ComputeForward(*qkv_bias_out, src_mask, transpose_out_2,
qk_out, src_mask_out, softmax_out,
attn_dropout_mask_out, attn_dropout_out,
qktv_out, fmha_out);
if (qkv_bias == nullptr) {
fmha_ref_compute.ComputeForward(*qkv_out, src_mask, transpose_out_2,
qk_out, src_mask_out, softmax_out,
attn_dropout_mask_out, attn_dropout_out,
qktv_out, fmha_out);
} else {
fmha_ref_compute.ComputeForward(*qkv_bias_out, src_mask, transpose_out_2,
qk_out, src_mask_out, softmax_out,
attn_dropout_mask_out, attn_dropout_out,
qktv_out, fmha_out);
}

// fmha_out: [batch_size, seq_len, num_head, head_dim]
// weight: [embed_dim, embed_dim]
Expand Down Expand Up @@ -249,9 +265,10 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto *out_linear_bias = ctx.Input<Tensor>("OutLinearBias");
auto *src_mask_data = (src_mask == nullptr ? nullptr : src_mask->data<T>());
auto *qkv_weight_data = qkv_weight->data<T>();
auto *qkv_bias_data = qkv_bias->data<T>();
auto *qkv_bias_data = (qkv_bias == nullptr) ? nullptr : qkv_bias->data<T>();
auto *out_linear_weight_data = out_linear_weight->data<T>();
auto *out_linear_bias_data = out_linear_bias->data<T>();
auto *out_linear_bias_data =
(out_linear_bias == nullptr) ? nullptr : out_linear_bias->data<T>();

// fw output
auto *fmha_out = ctx.Input<Tensor>("FMHAOut");
Expand Down Expand Up @@ -299,8 +316,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto *d_bias_dropout_residual_out =
ctx.Output<Tensor>(framework::GradVarName("BiasDropoutResidualOut"));
auto *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
auto *d_qkv_out_data = d_qkv_out->mutable_data<T>(ctx.GetPlace());
auto *d_qkv_bias_out_data = d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
// when qkv_bias is not nullptr, d_qkv_out is equals to d_qkv_bias_out, the
// space can be reused.
auto *d_qkv_out_data = (d_qkv_bias_out != nullptr)
? nullptr
: d_qkv_out->mutable_data<T>(ctx.GetPlace());
auto *d_qkv_bias_out_data =
(d_qkv_bias_out == nullptr)
? nullptr
: d_qkv_bias_out->mutable_data<T>(ctx.GetPlace());
auto *d_qktv_out_data = d_qktv_out->mutable_data<T>(ctx.GetPlace());
auto *d_transpose_out_2_data =
d_transpose_out_2->mutable_data<T>(ctx.GetPlace());
Expand All @@ -326,11 +350,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto *d_ln_2_bias = ctx.Output<Tensor>(framework::GradVarName("Ln2Bias"));

auto *d_qkv_weight_data = d_qkv_weight->mutable_data<T>(ctx.GetPlace());
auto *d_qkv_bias_data = d_qkv_bias->mutable_data<T>(ctx.GetPlace());
auto *d_qkv_bias_data = (d_qkv_bias == nullptr)
? nullptr
: d_qkv_bias->mutable_data<T>(ctx.GetPlace());
auto *d_out_linear_weight_data =
d_out_linear_weight->mutable_data<T>(ctx.GetPlace());
auto *d_out_linear_bias_data =
d_out_linear_bias->mutable_data<T>(ctx.GetPlace());
(d_out_linear_bias == nullptr)
? nullptr
: d_out_linear_bias->mutable_data<T>(ctx.GetPlace());

const auto input_x_dims = input_x->dims();
const auto qkv_w_dims = qkv_weight->dims();
Expand All @@ -352,12 +380,15 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {

bool transA = false;
bool transB = true;
bool compute_bias = true;
bool compute_qkv_bias = true;
if (qkv_bias == nullptr) {
compute_qkv_bias = false;
}
auto layer_norm_compute = AttnLayerNorm<T>(ctx.cuda_device_context(),
epsilon, bsz_seq, dim_embed);
auto qkv_compute =
AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
output_size, input_size, compute_bias);
output_size, input_size, compute_qkv_bias);
AttnDropoutParam attn_dropout_param(
is_test_1, dropout_implementation_1, attn_dropout_prob,
is_upscale_in_train_1, is_fix_seed_1, seed_val_1, seed_1);
Expand All @@ -367,7 +398,7 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
output_size = hidden_size;
transA = false;
transB = false;
compute_bias = false;
bool compute_bias = false;
auto out_linear_compute =
AttnMatMul<T>(ctx.cuda_device_context(), transA, transB, bsz_seq,
output_size, input_size, compute_bias);
Expand Down Expand Up @@ -405,14 +436,19 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
d_out_linear_out, d_fmha_out,
d_out_linear_weight, nullptr);

fmha_ref_compute.ComputeBackward(
*transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
*attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
d_transpose_out_2, nullptr, d_qkv_bias_out);
cudaMemcpyAsync(d_qkv_out_data, d_qkv_bias_out_data,
bsz_seq * 3 * num_head * dim_head * sizeof(T),
cudaMemcpyDeviceToDevice);
if (qkv_bias != nullptr) {
fmha_ref_compute.ComputeBackward(
*transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
*attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
d_transpose_out_2, nullptr, d_qkv_bias_out);
} else {
fmha_ref_compute.ComputeBackward(
*transpose_out_2, src_mask, *softmax_out, *attn_dropout_mask_out,
*attn_dropout_out, *qk_out, *src_mask_out, *d_fmha_out, d_qktv_out,
d_attn_dropout_out, d_softmax_out, d_src_mask_out, d_qk_out,
d_transpose_out_2, nullptr, d_qkv_out);
}

if (pre_layer_norm) {
auto *ln_mean = ctx.Input<Tensor>("LnMean");
Expand All @@ -432,15 +468,24 @@ class FusedAttentionGradKernel : public framework::OpKernel<T> {
auto *d_ln_bias_data =
(d_ln_bias == nullptr ? nullptr
: d_ln_bias->mutable_data<U>(ctx.GetPlace()));

qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out, d_ln_out,
d_qkv_weight, d_qkv_bias);
if (qkv_bias != nullptr) {
qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_bias_out,
d_ln_out, d_qkv_weight, d_qkv_bias);
} else {
qkv_compute.ComputeBackward(ln_out, qkv_weight, d_qkv_out, d_ln_out,
d_qkv_weight, d_qkv_bias);
}
layer_norm_compute.ComputeBackward(x_data, d_ln_out_data, ln_scale_data,
ln_mean_data, ln_var_data, d_x_data,
d_ln_scale_data, d_ln_bias_data);
} else {
qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
d_qkv_weight, d_qkv_bias);
if (qkv_bias != nullptr) {
qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_bias_out, d_x,
d_qkv_weight, d_qkv_bias);
} else {
qkv_compute.ComputeBackward(input_x, qkv_weight, d_qkv_out, d_x,
d_qkv_weight, d_qkv_bias);
}
}
// gradient accumulation
std::vector<const Tensor *> ins;
Expand Down
Loading