Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -661,6 +661,36 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
"the roi_align will change the batch size.";
return false;
}
std::vector<std::string> attrs{"pooled_height", "pooled_width",
"spatial_scale", "sampling_ratio"};
for (auto const attr : attrs) {
if (!desc.HasAttr(attr)) return false;
}

const auto pooled_height =
BOOST_GET_CONST(int, desc.GetAttr("pooled_height"));
if (pooled_height <= 0) return false;

const auto pooled_width =
BOOST_GET_CONST(int, desc.GetAttr("pooled_width"));
if (pooled_width <= 0) return false;

const auto spatial_scale =
BOOST_GET_CONST(float, desc.GetAttr("spatial_scale"));
if (spatial_scale <= 0.f) return false;

const auto sampling_ratio =
BOOST_GET_CONST(int, desc.GetAttr("sampling_ratio"));
const auto aligned = BOOST_GET_CONST(bool, desc.GetAttr("aligned"));

if (sampling_ratio == -1 && aligned == true) return false;

auto roi_align_inputs = desc.Inputs();
if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
if (desc.Input("RoisNum").size() >= 1) {
return false;
}
}
}

if (op_type == "shuffle_channel") {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertRoiAlignTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
return np.ones([batch, 256, 32, 32]).astype(np.float32)

def generate_input2(attrs: List[Dict[str, Any]], batch):
return np.random.random([3, 4]).astype(np.float32)

def generate_input3(attrs: List[Dict[str, Any]], batch):
return np.random.random([batch]).astype(np.int32)

for num_input in [0, 1]:
for batch in [1, 2, 4]:
for spatial_scale in [0.5, 0.6]:
for pooled_height in [7, 1]:
for pooled_width in [7, 1]:
for sampling_ratio in [-1, 4, 8]:
for aligned in [True, False]:
self.num_input = num_input
if num_input == 1:
batch = 1
dics = [{
"spatial_scale": spatial_scale,
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"sampling_ratio": sampling_ratio,
"aligned": aligned
}, {}]
dics_input = [{
"X": ["roi_align_input"],
"ROIs": ["ROIs"],
"RoisNum": ["RoisNum"]
}, {
"X": ["roi_align_input"],
"ROIs": ["ROIs"]
}]
program_input = [{
"roi_align_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch)),
"ROIs": TensorConfig(data_gen=partial(
generate_input2, dics, batch)),
"RoisNum": TensorConfig(
data_gen=partial(generate_input3,
dics, batch))
}, {
"roi_align_input": TensorConfig(
data_gen=partial(generate_input1,
dics, batch)),
"ROIs": TensorConfig(
data_gen=partial(generate_input2,
dics, batch),
lod=[[32, 3]])
}]
ops_config = [{
"op_type": "roi_align",
"op_inputs": dics_input[num_input],
"op_outputs": {
"Out": ["roi_align_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs=program_input[num_input],
outputs=["roi_align_out"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.num_input == 0:
self.dynamic_shape.min_input_shape = {
"roi_align_input": [1, 256, 32, 32],
"ROIs": [3, 4],
"RoisNum": [1]
}
self.dynamic_shape.max_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4],
"RoisNum": [1]
}
self.dynamic_shape.opt_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4],
"RoisNum": [1]
}
elif self.num_input == 1:
self.dynamic_shape.min_input_shape = {
"roi_align_input": [1, 256, 32, 32],
"ROIs": [3, 4]
}
self.dynamic_shape.max_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4]
}
self.dynamic_shape.opt_input_shape = {
"roi_align_input": [1, 256, 64, 64],
"ROIs": [3, 4]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if self.num_input == 0:
if dynamic_shape == True:
return 0, 5
elif self.num_input == 1:
if dynamic_shape == True:
return 1, 3
else:
return 0, 4

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.inputs) == 3:
return True
return False

self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT RoisNum NOT SUPPORT")

def teller2(program_config, predictor_config):
if (program_config.ops[0].attrs['sampling_ratio'] == -1 and
program_config.ops[0].attrs['aligned'] == True):
return True
return False

self.add_skip_case(
teller2, SkipReasons.TRT_NOT_SUPPORT,
"SAMPLING_RATIO EQUAL TO - 1 WHEN ALIGNED IS TRUE IS NOT SUPPORT")

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()