Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,17 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,

if (op_type == "gather") {
if (!with_dynamic_shape) return false;

if (with_dynamic_shape) {
auto* block = desc.Block();
auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() == 1) {
VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
return false;
}
}

auto inputs = desc.InputArgumentNames();
for (auto& input : inputs) {
if (input == "Axis" && desc.Input("Axis").size() > 0) return false;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import logging


class TrtConvertGatherTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if len(inputs['input_data'].shape) <= attrs[0]['axis']:
return False

return True

def sample_program_configs(self):
def generate_input1(shape):
return np.random.random(shape).astype(np.float32)

def generate_input2(index):
return np.array(index).astype(np.int32)

def generate_input3(axis):
return np.array([axis]).astype(np.int32)

for shape in [[32], [16, 64], [32, 16, 16], [32, 64, 16, 32]]:
for index in [[1, 4], [4, 8]]:
for axis in [0, 1, 2, 3]:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个axis也不支持负数吧

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

测试发现置为-1时原生和trt都能跑,设为其他负数会显示错误的显存申请数而报错。

for overwrite in [True, False]:
for input in [{
"X": ["input_data"],
"Index": ["index_data"]
}, {
"X": ["input_data"],
"Index": ["index_data"],
"Axis": ["axis_data"]
}]:
self.shape = shape
self.axis = axis
self.input_num = len(input)
dics = [{"overwrite": overwrite, "axis": axis}]
ops_config = [{
"op_type": "gather",
"op_inputs": input,
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(data_gen=partial(
generate_input1, shape)),
"index_data": TensorConfig(data_gen=partial(
generate_input2, index)),
} if len(input) == 2 else {
"input_data": TensorConfig(data_gen=partial(
generate_input1, shape)),
"index_data": TensorConfig(data_gen=partial(
generate_input2, index)),
"axis_data": TensorConfig(data_gen=partial(
generate_input3, axis)),
},
outputs=["output_data"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if len(self.shape) == 1:
self.dynamic_shape.min_input_shape = {
"input_data": [4],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [128],
"index_data": [4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [16],
"index_data": [2]
}
elif len(self.shape) == 2:
self.dynamic_shape.min_input_shape = {
"input_data": [2, 4],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [256, 256],
"index_data": [4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [64, 32],
"index_data": [2]
}
elif len(self.shape) == 3:
self.dynamic_shape.min_input_shape = {
"input_data": [2, 4, 4],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [128, 256, 256],
"index_data": [4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [16, 64, 32],
"index_data": [2]
}
elif len(self.shape) == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [2, 4, 4, 2],
"index_data": [1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [128, 256, 128, 256],
"index_data": [4]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [16, 64, 16, 32],
"index_data": [2]
}

def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(dynamic_shape):
if self.input_num == 3:
return 0, 5
else:
if dynamic_shape and self.axis == 0:
return 1, 3
else:
return 0, 4

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(self.dynamic_shape.min_input_shape) != 0:
inputs = program_config.inputs
if len(inputs['input_data'].shape) == 1 or len(inputs[
'index_data'].shape) == 1:
return True
return False

self.add_skip_case(
teller1, SkipReasons.TRT_NOT_SUPPORT,
"Need to repair the case: trt reshape out failed for dynamic shape mode when inputs' dims==1."
)

def teller2(program_config, predictor_config):
inputs = program_config.inputs
if "axis_data" in inputs.keys():
return True
return False

self.add_skip_case(
teller2, SkipReasons.TRT_NOT_SUPPORT,
"Need to repair the case: trt do not support axis tensor input.")

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()