Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 12 additions & 10 deletions paddle/fluid/inference/tensorrt/convert/nearest_interp_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -59,22 +59,24 @@ class NearestInterpolateOpConverter : public OpConverter {
float scale_w = 1.f;

std::vector<float> scales;

if (scale > 0.f && (out_h <= 0 && out_w <= 0)) {
if (scale > 0.f) {
scale_h = scale;
scale_w = scale;
} else {
// axis are different in static/dynamic mode
bool with_dynamic = engine_->with_dynamic_shape();

int h_axis = (data_layout == framework::DataLayout::kNCHW) + with_dynamic;
int w_axis =
(data_layout == framework::DataLayout::kNCHW) + 1 + with_dynamic;

scale_h =
static_cast<float>(out_h) / static_cast<float>(in_dim.d[h_axis]);
scale_w =
static_cast<float>(out_w) / static_cast<float>(in_dim.d[w_axis]);
if (!with_dynamic) {
int h_axis =
(data_layout == framework::DataLayout::kNCHW) + with_dynamic;
int w_axis =
(data_layout == framework::DataLayout::kNCHW) + 1 + with_dynamic;

scale_h =
static_cast<float>(out_h) / static_cast<float>(in_dim.d[h_axis]);
scale_w =
static_cast<float>(out_w) / static_cast<float>(in_dim.d[w_axis]);
}
}

if (engine_->with_dynamic_shape()) {
Expand Down
4 changes: 4 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -449,6 +449,10 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return false;
}
}
if ((scale <= 0.f) && with_dynamic_shape) {
VLOG(3) << "dynamic shape not support scale not set.";
return false;
}
}
}

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest


class TrtConvertNearestInterpTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

if attrs[0]['scale'] <= 0 and (attrs[0]['out_h'] <= 0 or
attrs[0]['out_w'] <= 0):
return False
if (attrs[0]['out_h'] <= 0) ^ (attrs[0]['out_w'] <= 0):
return False

return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 3, 64, 64]).astype(np.float32)

for data_layout in ["NCHW", "NHWC"]:
for interp_method in ["nearest"]:
for align_corners in [True, False]:
for scale in [2.0, -1.0, 0.0]:
for out_h in [32, 64, 128 - 32]:
for out_w in [32, -32]:
dics = [{
"data_layout": data_layout,
"interp_method": interp_method,
"align_corners": align_corners,
"scale": scale,
"out_h": out_h,
"out_w": out_w
}]

ops_config = [{
"op_type": "nearest_interp",
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": {
"Out": ["nearest_interp_output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1,
dics))
},
outputs=["nearest_interp_output_data"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-2

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-2

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if program_config.ops[0].attrs[
'scale'] <= 0 and self.dynamic_shape.min_input_shape:
return True
return False

self.add_skip_case(
teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
"NOT Implemented: we need to add support scale <= 0 in dynamic shape in the future"
)

pass

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()