Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions python/paddle/fluid/layers/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3190,6 +3190,10 @@ def instance_norm(input,
dtype = core.VarDesc.VarType.FP32

input_shape = input.shape
if len(input.shape) < 2 or len(input.shape) > 5:
raise ValueError(
'expected 2D or 3D or 4D or 5D input (got {}D input, input shape is: {})'.
format(len(input.shape), input_shape))
channel_num = input_shape[1]

param_shape = [channel_num]
Expand Down
10 changes: 10 additions & 0 deletions python/paddle/fluid/tests/unittests/test_instance_norm_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid.op import Operator
Expand Down Expand Up @@ -215,6 +216,15 @@ def test_errors(self):
self.assertRaises(TypeError, fluid.layers.instance_norm, x2)


class TestInstanceNormOpErrorCase1(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
# the first dimension of input for instance_norm must between [2d, 5d]
x = fluid.layers.data(
name='x', shape=[3], dtype="float32", append_batch_size=False)
self.assertRaises(ValueError, paddle.static.nn.instance_norm, x)


class TestElasticNormOp(unittest.TestCase):
def init_test_case(self):
self.epsilon = 1e-5
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -45,12 +45,12 @@ def error2d():

def error3d():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
instance_norm3d = paddle.nn.BatchNorm3D(1)
instance_norm3d = paddle.nn.InstanceNorm3D(1)
instance_norm3d(fluid.dygraph.to_variable(x_data_4))

def weight_bias_false():
x_data_4 = np.random.random(size=(2, 1, 3, 3)).astype('float32')
instance_norm3d = paddle.nn.BatchNorm3D(
instance_norm3d = paddle.nn.InstanceNorm3D(
1, weight_attr=False, bias_attr=False)

with fluid.dygraph.guard(p):
Expand Down