Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 0 additions & 22 deletions paddle/fluid/inference/tensorrt/convert/split_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -49,43 +49,21 @@ class SplitOpConverter : public OpConverter {
} else {
axis += (axis < 0) ? input_dims.nbDims : -1;
}

PADDLE_ENFORCE_NE(input_dims.d[axis], -1,
platform::errors::InvalidArgument(
"The (%d) dim of input should not be -1", axis));
if (num > 0) {
int64_t in_axis_dim = input_dims.d[axis];
PADDLE_ENFORCE_EQ(
in_axis_dim % num, 0,
platform::errors::InvalidArgument(
"Invalid number to split. Tensor split does not result"
" in an equal division of dimensions. Axis dim = %d %% num = %d "
"!= 0",
in_axis_dim, num));
size_t out_axis_dim = in_axis_dim / num;
for (int i = 0; i < num; ++i) {
output_lengths.push_back(out_axis_dim);
}
}

PADDLE_ENFORCE_EQ(
output_lengths.size(), output_num,
platform::errors::InvalidArgument(
"The output_length should be equal to the output size."));

nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
bool with_fp16 =
engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
plugin::SplitPluginDynamic* plugin =
new plugin::SplitPluginDynamic(axis, output_lengths, with_fp16);
layer = engine_->AddDynamicPlugin(&input, input_num, plugin);
#else
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"));
#endif
} else {
bool with_fp16 =
engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
Expand Down
74 changes: 68 additions & 6 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -498,16 +498,78 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
<< desc.Input("X").size() << ".";
return false;
}
auto split_inputs = desc.Inputs();
if (split_inputs.find("AxisTensor") != split_inputs.end()) {
if (desc.Input("AxisTensor").size() >= 1) {
return false;
}
}
if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
if (desc.Input("SectionsTensorList").size() >= 1) {
return false;
}
}
if (!desc.HasAttr("axis")) {
return false;
} else {
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));
if (axis == 0) {
VLOG(3) << "Invalid split axis. Split on batch is not supported in "
"TensorRT";
return false;
}
int axis = BOOST_GET_CONST(int, desc.GetAttr("axis"));

if (axis == 0) {
VLOG(3) << "Invalid split axis. Split on batch is not supported in "
"TensorRT";
return false;
}
auto* block = desc.Block();
auto x_var_name = desc.Input("X")[0];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

优先使用 const T&,下同

auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
size_t output_num = desc.Output("Out").size();
std::vector<int> output_lengths;
int num = 0;
if (desc.HasAttr("num")) {
num = BOOST_GET_CONST(int, desc.GetAttr("num"));
}
if (desc.HasAttr("sections")) {
output_lengths =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
}
if (output_lengths.size() == 0 && num == 0) {
VLOG(3) << "sections and num cannot be equal to 0 at the same time";
return false;
}
if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
"confirm that "
"your TRT version is no less than 6.0";
return false;
#endif
}
axis += (axis < 0) ? x_shape.size() : 0;
if (x_shape[axis] == -1) {
VLOG(3) << "The (" << axis << ") dim of input should not be -1";
return false;
}
if (output_lengths.size() == 0) {
if (num > 0) {
int64_t in_axis_dim = x_shape[axis];
if (in_axis_dim % num != 0) {
VLOG(3) << "Invalid number to split. Tensor split does not result"
" in an equal division of dimensions. Axis dim = "
<< in_axis_dim << " num = " << num << "!= 0";
return false;
}
size_t out_axis_dim = in_axis_dim / num;
for (int i = 0; i < num; ++i) {
output_lengths.push_back(out_axis_dim);
}
}
}
if (output_lengths.size() != output_num) {
VLOG(3) << "The output_length should be equal to the output size.";
return false;
}
}

if (op_type == "slice") {
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertSplitTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
outputs = program_config.outputs

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# the dimensions of input and axis match
if len(inputs['split_input'].shape) <= attrs[0]['axis']:
return False

#Sections and num cannot both be equal to 0.
if len(attrs[0]['sections']) == 0:
if attrs[0]['num'] == 0:
return False

#When sections and num are not both equal to 0, sections has higher priority.
#The sum of sections should be equal to the input size.
if len(attrs[0]['sections']) != 0:
if attrs[0]['num'] != 0:
return False
if len(outputs) != len(attrs[0]['sections']):
return False
sum = 0
for num in attrs[0]['sections']:
sum += num
if sum != inputs['split_input'].shape[attrs[0]['axis']]:
return False

#The size of num should be equal to the input dimension.
if attrs[0]['num'] != 0:
if len(outputs) != attrs[0]['num']:
return False

#Test AxisTensor and SectionsTensorList
if self.num_input == 0:
if self.dims == 2 and attrs[0]['sections'] == [10, 14] and len(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

对于这些特殊处理的case,可以补上简单注释,方便后续其他同学的理解。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

outputs) == 2:
return True
else:
return False

return True

def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], batch):
if self.dims == 4:
return np.ones([batch, 3, 3, 24]).astype(np.float32)
elif self.dims == 3:
return np.ones([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.ones([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.ones([24]).astype(np.float32)

def generate_AxisTensor(attrs: List[Dict[str, Any]]):
return np.ones([1]).astype(np.int32)

def generate_SectionsTensorList1(attrs: List[Dict[str, Any]]):
return np.array([10]).astype(np.int32)

def generate_SectionsTensorList2(attrs: List[Dict[str, Any]]):
return np.array([14]).astype(np.int32)

for num_input in [0, 1]:
for dims in [1, 2, 3, 4]:
for batch in [3, 6, 9]:
for Out in [["output_var0", "output_var1"],
["output_var0", "output_var1", "output_var2"]]:
for sections in [[], [1, 2], [2, 1], [10, 14],
[1, 1, 1], [2, 2, 2], [3, 3, 3],
[3, 7, 14]]:
for num in [0, 3]:
for axis in [0, 1, 2, 3]:
self.batch = batch
self.num_input = num_input
self.dims = dims
dics = [{
"sections": sections,
"num": num,
"axis": axis
}, {}]

dics_intput = [{
"X": ["split_input"],
"AxisTensor": ["AxisTensor"],
"SectionsTensorList": [
"SectionsTensorList1",
"SectionsTensorList2"
]
}, {
"X": ["split_input"]
}]
dics_intputs = [{
"AxisTensor":
TensorConfig(data_gen=partial(
generate_AxisTensor, dics)),
"SectionsTensorList1": TensorConfig(
data_gen=partial(
generate_SectionsTensorList1,
dics)),
"SectionsTensorList2":
TensorConfig(data_gen=partial(
generate_SectionsTensorList2, dics))
}, {}]

ops_config = [{
"op_type": "split",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Out": Out
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights=dics_intputs[num_input],
inputs={
"split_input":
TensorConfig(data_gen=partial(
generate_input1, dics, batch))
},
outputs=Out)

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"split_input": [1, 3, 3, 24]
}
self.dynamic_shape.max_input_shape = {
"split_input": [9, 3, 3, 24]
}
self.dynamic_shape.opt_input_shape = {
"split_input": [1, 3, 3, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {"split_input": [1, 3, 24]}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

动态shape设置,除了batch维,其他维度也至少有一个维度需要变化。否则可能覆盖不全

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

当sections 固定时,动态shape对应维度的不同会导致尺寸不匹配,所以固定动态shape各维度的尺寸

self.dynamic_shape.max_input_shape = {"split_input": [9, 3, 24]}
self.dynamic_shape.opt_input_shape = {"split_input": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"split_input": [1, 24]}
self.dynamic_shape.max_input_shape = {"split_input": [9, 24]}
self.dynamic_shape.opt_input_shape = {"split_input": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"split_input": [24]}
self.dynamic_shape.max_input_shape = {"split_input": [24]}
self.dynamic_shape.opt_input_shape = {"split_input": [24]}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if len(program_config.outputs) == 2:
if attrs[0]['axis'] != 0:
return 1, 3
else:
return 0, 4
else:
if attrs[0]['axis'] != 0:
return 1, 4
else:
return 0, 5

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
self.trt_param.max_batch_size = 9
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FP16精度设置过低,可以实际跑下看看,因为有随机数种子,输入应该是确定的。
如果绝对值比较大,可以使用相对误差

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

True), 1e-5

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.weights) == 3:
return True
return False

self.add_skip_case(
teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT AxisTensor AND SectionsTensorList NOT SUPPORT.")

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()