Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions paddle/fluid/operators/label_smooth_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/label_smooth_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T>
void LabelSmoothMuls(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Muls", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}

template <typename T>
void LabelSmoothAdds(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Adds", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}

template <typename T>
void LabelSmoothAddBroadCast(const platform::Place& place,
const aclrtStream& stream, const Tensor* in1,
const Tensor* in2, Tensor* out) {
out->mutable_data<T>(place);
const auto& runner = NpuOpRunner("AddV2", {*in1, *in2}, {*out}, {});
runner.Run(stream);
}

template <typename T>
class LabelSmoothNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out_t = ctx.Output<LoDTensor>("Out");
auto* in_t = ctx.Input<LoDTensor>("X");
auto* dist_t = ctx.Input<Tensor>("PriorDist");
auto epsilon = ctx.Attr<float>("epsilon");

auto label_dim = in_t->dims()[in_t->dims().size() - 1];
auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

if (dist_t) {
Tensor tmp;
Tensor dist;
Tensor tmp2;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothMuls<T>(place, stream, dist_t, epsilon, &tmp2);
tmp2.Resize({1, label_dim});
LabelSmoothAddBroadCast<T>(place, stream, &tmp, &tmp2, out_t);
} else {
Tensor tmp;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothAdds<T>(place, stream, &tmp, (epsilon / label_dim), out_t);
}
}
};

template <typename T>
class LabelSmoothGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto epsilon = ctx.Attr<float>("epsilon");

auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

LabelSmoothMuls<T>(place, stream, d_out_t, 1 - epsilon, d_in_t);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(label_smooth, ops::LabelSmoothNPUKernel<float>,
ops::LabelSmoothNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(label_smooth_grad, ops::LabelSmoothGradNPUKernel<float>,
ops::LabelSmoothGradNPUKernel<plat::float16>);
126 changes: 126 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_label_smooth_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestLabelSmoothOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "label_smooth"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)

self.set_inputs()
self.set_attrs()
self.set_outputs()

def calc_out(self, label, epsilon, dist=None):
label_dim = label.shape[-1]
y = (1 - epsilon) * label
if dist is not None:
y += epsilon * dist
else:
y += epsilon / label_dim
return y.astype(self.dtype)

def set_inputs(self):
batch_size, label_dim = 10, 12
x = np.zeros((batch_size, label_dim)).astype(self.dtype)
nonzero_index = np.random.randint(label_dim, size=(batch_size))
x[np.arange(batch_size), nonzero_index] = 1
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}

def set_attrs(self):
epsilon = 0.1
self.attrs = {"epsilon": epsilon}

def set_outputs(self):
dist = None if 'PriorDist' not in self.inputs else self.inputs[
'PriorDist']
out = self.calc_out(self.inputs['X'], self.attrs['epsilon'], dist)
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output_with_place(self.place)

def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')


class TestLabelSmoothOpWithPriorDist(TestLabelSmoothOp):
def set_inputs(self):
super(TestLabelSmoothOpWithPriorDist, self).set_inputs()
label_dim = self.inputs['X'].shape[-1]
dist = np.random.random((1, label_dim)).astype(self.dtype)
self.inputs['PriorDist'] = dist


class TestLabelSmoothOp3D(TestLabelSmoothOp):
def set_inputs(self):
super(TestLabelSmoothOp3D, self).set_inputs()
self.inputs['X'].reshape([2, -1, self.inputs['X'].shape[-1]])


class TestLabelSmoothOpWithPriorDist3D(TestLabelSmoothOpWithPriorDist):
def set_inputs(self):
super(TestLabelSmoothOpWithPriorDist3D, self).set_inputs()
self.inputs['X'].reshape([2, -1, self.inputs['X'].shape[-1]])


class TestLabelSmoothOpFP16(TestLabelSmoothOp):
def init_dtype(self):
self.dtype = np.float16


class TestLabelSmoothOpWithPriorDistFP16(TestLabelSmoothOpWithPriorDist):
def init_dtype(self):
self.dtype = np.float16


class TestLabelSmoothOp3DFP16(TestLabelSmoothOp3D):
def init_dtype(self):
self.dtype = np.float16


class TestLabelSmoothOpWithPriorDist3DFP16(TestLabelSmoothOpWithPriorDist3D):
def init_dtype(self):
self.dtype = np.float16


if __name__ == '__main__':
unittest.main()