Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions paddle/fluid/operators/fill_constant_batch_size_like_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fill_constant_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/utils.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FillConstantBatchSizeLikeOpNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto data_type =
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype"));
auto float_value = ctx.Attr<float>("value");
auto str_value = ctx.Attr<std::string>("str_value");
auto force_cpu = ctx.Attr<bool>("force_cpu");

auto *out = ctx.Output<Tensor>("Out");
auto *input = ctx.Input<Tensor>("Input");
if (&ctx.Attr<int>("input_dim_idx") == 0) {
// set the correct batch size.
auto odims = out->dims();
int input_dim_idx = ctx.Attr<int>("input_dim_idx");
int output_dim_idx = ctx.Attr<int>("output_dim_idx");
odims[output_dim_idx] = input->dims()[input_dim_idx];
out->mutable_data<T>(odims, ctx.GetPlace());
}

T value;
if (str_value.empty()) {
value = static_cast<T>(float_value);
} else {
std::stringstream convert_stream(str_value);
if (std::is_same<int64_t, T>::value) {
int64_t tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
} else {
double tmp_value;
convert_stream >> tmp_value;
value = static_cast<T>(tmp_value);
}
}

platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(ctx.GetPlace());
bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();
if (cpu_place) {
math::SetConstant<platform::CPUDeviceContext, T> functor;
out->mutable_data(platform::CPUPlace(), data_type);
functor(reinterpret_cast<const platform::CPUDeviceContext &>(dev_ctx),
out, static_cast<T>(value));
} else {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

参考fill_constant_batch_size_like_op.h,这里应该是以下两个条件同时成立的情况下才走CPU
bool cpu_place = force_cpu || ctx.GetPlace() == platform::CPUPlace();

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

好的,谢谢

out->mutable_data(ctx.GetPlace(), data_type);
Tensor tensor_tmp(data_type);
tensor_tmp.mutable_data<T>({1}, ctx.GetPlace());
FillNpuTensorWithConstant<T>(&tensor_tmp, value);

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto &runner =
NpuOpRunner("FillD", {tensor_tmp}, {*out},
{{"dims", framework::vectorize(out->dims())}});
runner.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
fill_constant_batch_size_like,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, float>,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, int>,
ops::FillConstantBatchSizeLikeOpNPUKernel<
paddle::platform::NPUDeviceContext, paddle::platform::float16>);
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core

paddle.enable_static()
SEED = 2021


class TestFillConstantBatchSizeLike(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "fill_constant_batch_size_like"
self.init_shape()
self.init_value()
self.init_dtype()
self.init_force_cpu()
self.init_dim_idx()

self.inputs = {
'Input': np.random.random(self.input_shape).astype("float32")
}
self.attrs = {
'shape': self.shape,
'value': self.value,
'str_value': self.str_value,
'dtype': self.dtype,
'force_cpu': self.force_cpu,
'input_dim_idx': self.input_dim_idx,
'output_dim_idx': self.output_dim_idx
}
self.outputs = {
'Out': np.full(self.output_shape, self.output_value,
self.output_dtype)
}

def set_npu(self):
self.__class__.use_npu = True

def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (4, 92)

def init_value(self):
self.value = 3.8
self.str_value = ''
self.output_value = 3.8

def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP32
self.output_dtype = np.float32

def init_force_cpu(self):
self.force_cpu = False

def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 0

def test_check_output(self):
self.check_output_with_place(self.place)


class TestFillConstantBatchSizeLike2(TestFillConstantBatchSizeLike):
def init_shape(self):
# test shape
self.input_shape = [4, 5, 6, 7]
self.shape = [10, 123, 92]
self.output_shape = (4, 123, 92)


class TestFillConstantBatchSizeLike3(TestFillConstantBatchSizeLike):
def init_value(self):
# use 'str_value' rather than 'value'
self.value = 3.8
self.str_value = '4.5'
self.output_value = 4.5


class TestFillConstantBatchSizeLike6(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.FP16
self.output_dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-2)


class TestFillConstantBatchSizeLike7(TestFillConstantBatchSizeLike):
def init_dtype(self):
self.dtype = core.VarDesc.VarType.INT32
self.output_dtype = np.int32


class TestFillConstantBatchSizeLike8(TestFillConstantBatchSizeLike):
def init_force_cpu(self):
self.force_cpu = True


class TestFillConstantBatchSizeLike9(TestFillConstantBatchSizeLike):
def init_shape(self):
self.input_shape = [4, 5]
self.shape = [123, 92]
self.output_shape = (123, 4)

def init_dim_idx(self):
self.input_dim_idx = 0
self.output_dim_idx = 1


if __name__ == '__main__':
unittest.main()