Skip to content
59 changes: 59 additions & 0 deletions paddle/fluid/operators/eye_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/eye_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class EyeNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto num_rows = ctx.Attr<int64_t>("num_rows");

auto d_nums = ctx.Attr<int>("dtype");
auto dtype =
ConvertToNpuDtype(static_cast<framework::proto::VarType::Type>(d_nums));

auto num_columns = ctx.Attr<int64_t>("num_columns");
if (num_columns == -1) num_columns = num_rows;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

33-37行合并为以下2行就可以,因为在python端的def eye中输入的num_columns不是None,因此ctx.HasAttr("num_columns")在API调用端永远是true.
auto num_columns = ctx.Attr<int64_t>("num_columns");
if (num_columns == -1) num_columns = num_rows;

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

明白了,done


framework::NPUAttributeMap attr_input = {
{"num_rows", num_rows}, {"num_columns", num_columns}, {"dtype", dtype}};

auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());

const auto& runner = NpuOpRunner("Eye", {}, {*out}, attr_input);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
eye, ops::EyeNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::EyeNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::EyeNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
195 changes: 195 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_eye_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
import paddle.fluid.framework as framework

paddle.enable_static()
np.random.seed(10)


class TestEyeOp(OpTest):
def setUp(self):
'''
Test eye op with specified shape
'''
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "eye"
self.inputs = {}

self.num_rows = 0
self.num_columns = 0
self.dtype = np.float32

self.initTestCase()

if self.num_columns == 0:
self.attrs = {
'num_rows': self.num_rows,
'dtype': framework.convert_np_dtype_to_dtype_(self.dtype)
}
self.outputs = {'Out': np.eye(self.num_rows, dtype=self.dtype)}
else:
self.attrs = {
'num_rows': self.num_rows,
'num_columns': self.num_columns,
'dtype': framework.convert_np_dtype_to_dtype_(self.dtype)
}
self.outputs = {
'Out': np.eye(self.num_rows, self.num_columns, dtype=self.dtype)
}

def initTestCase(self):
self.num_rows = 219
self.num_columns = 319
self.dtype = np.int32

def set_npu(self):
self.__class__.use_npu = True

def test_check_output(self):
self.check_output_with_place(self.place)


class TestEyeOp1(TestEyeOp):
def initTestCase(self):
self.num_rows = 50


class TestEyeOp2(TestEyeOp):
def initTestCase(self):
self.num_rows = 50
self.dtype = np.int32


class TestEyeOp3(TestEyeOp):
def initTestCase(self):
self.num_rows = 50
self.dtype = np.float16


class TestEyeOp4(TestEyeOp):
def initTestCase(self):
self.num_rows = 1
self.num_columns = 99


class TestEyeOp5(TestEyeOp):
def initTestCase(self):
self.num_rows = 100
self.num_columns = 100


Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

少了一个dtype是fp32的单测,另外参考 test_eye_op.py 的 class API_TestTensorEye(unittest.TestCase),增加关于静态图API和动态图API的测试。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done
image

class TestEyeOp6(TestEyeOp):
def initTestCase(self):
self.num_rows = 100
self.num_columns = 100
self.dtype = np.float32


class API_TestTensorEye(unittest.TestCase):
def test_out(self):
with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10)
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, dtype="float32")
self.assertEqual((result == expected_result).all(), True)

with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10, num_columns=7, dtype="float16")
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, 7, dtype="float16")
self.assertEqual((result == expected_result).all(), True)

with paddle.static.program_guard(paddle.static.Program()):
data = paddle.eye(10, dtype="int32")
place = paddle.NPUPlace(0)
exe = paddle.static.Executor(place)
result, = exe.run(fetch_list=[data])
expected_result = np.eye(10, dtype="int32")
self.assertEqual((result == expected_result).all(), True)

paddle.disable_static(paddle.NPUPlace(0))
out = paddle.eye(10, dtype="int32")
expected_result = np.eye(10, dtype="int32")
paddle.enable_static()
self.assertEqual((out.numpy() == expected_result).all(), True)

paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(out.numpy().shape == np.array(expected_result).shape,
True)
self.assertEqual((out.numpy() == expected_result).all(), True)

paddle.disable_static(paddle.NPUPlace(0))
batch_shape = [3, 2]
out = fluid.layers.eye(10, 10, dtype="int32", batch_shape=batch_shape)
result = np.eye(10, dtype="int32")
expected_result = []
for index in reversed(batch_shape):
tmp_result = []
for i in range(index):
tmp_result.append(result)
result = tmp_result
expected_result = np.stack(result, axis=0)
paddle.enable_static()
self.assertEqual(out.numpy().shape == np.array(expected_result).shape,
True)
self.assertEqual((out.numpy() == expected_result).all(), True)

def test_errors(self):
with paddle.static.program_guard(paddle.static.Program()):

def test_num_rows_type_check():
paddle.eye(-1, dtype="int64")

self.assertRaises(TypeError, test_num_rows_type_check)

def test_num_columns_type_check():
paddle.eye(10, num_columns=5.2, dtype="int64")

self.assertRaises(TypeError, test_num_columns_type_check)

def test_num_columns_type_check1():
paddle.eye(10, num_columns=10, dtype="int8")

self.assertRaises(TypeError, test_num_columns_type_check1)


if __name__ == "__main__":
unittest.main()