Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from scipy.special import expit, erf
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.tests.unittests.test_activation_op import TestActivation
from paddle.fluid.tests.unittests.test_gelu_op import gelu


@OpTestTool.skip_if_not_cpu_bf16()
class TestMKLDNNSigmoidBF16Op(TestActivation):
def config(self):
self.op_type = "sigmoid"

def op_forward(self, x):
return 1 / (1 + np.exp(-x))

def op_grad(self, dout, x):
return dout * self.op_forward(x) * (1 - self.op_forward(x))

def set_attrs(self):
self.attrs = {"use_mkldnn": True}

def init_data(self):
self.x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype(np.float32)

def setUp(self):
self.dtype = np.uint16
self.init_data()
self.config()
self.out = self.op_forward(self.x)

self.inputs = {'X': convert_float_to_uint16(self.x)}
self.outputs = {'Out': self.out}
self.set_attrs()

def calculate_grads(self):
self.dx = self.op_grad(self.out, self.x)

def test_check_output(self):
self.check_output_with_place(core.CPUPlace())

def test_check_grad(self):
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.dx],
user_defined_grad_outputs=[convert_float_to_uint16(self.out)])


class TestMKLDNNGeluErfBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"

def op_forward(self, x):
return gelu(x, False)

def op_grad(self, dout, x):
return (dout *
(0.5 + 0.5 * erf(x / np.sqrt(2)) +
(x / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2)))))


class TestMKLDNNGeluErfDim2BF16Op(TestMKLDNNGeluErfBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)


class TestMKLDNNGeluTanhBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"

def op_forward(self, x):
return gelu(x, True)

def op_grad(self, dout, x):
grad_part = np.tanh(
np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))
return dout * 0.5 * (1 + grad_part) * (1 + np.sqrt(2 / np.pi) *
(x + 0.134145 * np.power(x, 3)) *
(1 - grad_part))

def set_attrs(self):
self.attrs = {"use_mkldnn": True, "approximate": True}


class TestMKLDNNGeluTanhDim2BF16Op(TestMKLDNNGeluTanhBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
Original file line number Diff line number Diff line change
Expand Up @@ -79,90 +79,6 @@ def setUp(self):
self.attrs = {"use_mkldnn": True, "approximate": True}


#Use it as a base class for BF16 activation tests, just override necessary functions
class TestMKLDNNSigmoidBF16Op(TestActivation):
@OpTestTool.skip_if_not_cpu_bf16()
def config(self):
self.op_type = "sigmoid"

def op_forward(self, x):
return 1 / (1 + np.exp(-x))

def op_grad(self, dout, x):
return dout * self.op_forward(x) * (1 - self.op_forward(x))

def set_attrs(self):
self.attrs = {"use_mkldnn": True}

def init_data(self):
self.x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype(np.float32)

def setUp(self):
self.dtype = np.uint16
self.init_data()
self.config()
self.out = self.op_forward(self.x)

self.inputs = {'X': convert_float_to_uint16(self.x)}
self.outputs = {'Out': self.out}
self.set_attrs()

def calculate_grads(self):
self.dx = self.op_grad(self.out, self.x)

def test_check_output(self):
self.check_output_with_place(core.CPUPlace())

def test_check_grad(self):
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.dx],
user_defined_grad_outputs=[convert_float_to_uint16(self.out)])


class TestMKLDNNGeluErfBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"

def op_forward(self, x):
return gelu(x, False)

def op_grad(self, dout, x):
return (dout *
(0.5 + 0.5 * erf(x / np.sqrt(2)) +
(x / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2)))))


class TestMKLDNNGeluErfDim2BF16Op(TestMKLDNNGeluErfBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)


class TestMKLDNNGeluTanhBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"

def op_forward(self, x):
return gelu(x, True)

def op_grad(self, dout, x):
grad_part = np.tanh(
np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))
return dout * 0.5 * (1 + grad_part) * (1 + np.sqrt(2 / np.pi) *
(x + 0.134145 * np.power(x, 3)) *
(1 - grad_part))

def set_attrs(self):
self.attrs = {"use_mkldnn": True, "approximate": True}


class TestMKLDNNGeluTanhDim2BF16Op(TestMKLDNNGeluTanhBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)


class TestMKLDNNTanhDim2(TestTanh):
def setUp(self):
super(TestMKLDNNTanhDim2, self).setUp()
Expand Down