Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions paddle/fluid/operators/digamma_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/digamma_op.h"

namespace paddle {
namespace operators {

class DigammaOp : public framework::OperatorWithKernel {
public:
DigammaOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}

void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Digamma");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Digamma");

auto in_dims = ctx->GetInputDim("X");

ctx->SetOutputDim("Out", in_dims);
ctx->ShareLoD("X", "Out");
}
};

class DigammaOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of digamma operator.");
AddOutput("Out", "(Tensor), The output tensor of digamma operator.");
AddComment(R"DOC(
Digamma Operator.

This operator is used to perform elementwise digamma for input $X$.
$$out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }$$

)DOC");
}
};

class DigammaGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@Grad", "DigammaGrad");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DigammaGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "DigammaGrad");

auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
}
};

template <typename T>
class DigammaGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

void Apply(GradOpPtr<T> retv) const override {
retv->SetType("digamma_grad");
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetInput("X", this->Input("X"));
retv->SetAttrMap(this->Attrs());
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(digamma, ops::DigammaOp, ops::DigammaOpMaker,
ops::DigammaGradOpMaker<paddle::framework::OpDesc>,
ops::DigammaGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(digamma_grad, ops::DigammaGradOp);

REGISTER_OP_CPU_KERNEL(
digamma, ops::DigammaKernel<paddle::platform::CPUDeviceContext, float>,
ops::DigammaKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
digamma_grad,
ops::DigammaGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::DigammaGradKernel<paddle::platform::CPUDeviceContext, double>);
26 changes: 26 additions & 0 deletions paddle/fluid/operators/digamma_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/digamma_op.h"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

here we only need the header digamma_op.h, remove other headers

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!


namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
digamma, ops::DigammaKernel<paddle::platform::CUDADeviceContext, float>,
ops::DigammaKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
digamma_grad,
ops::DigammaGradKernel<paddle::platform::CUDADeviceContext, float>,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

need special DigammaGradKernel here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

register a CudaKernel for digamma grad is necessary

ops::DigammaGradKernel<paddle::platform::CUDADeviceContext, double>);
99 changes: 99 additions & 0 deletions paddle/fluid/operators/digamma_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <unsupported/Eigen/SpecialFunctions>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
struct DigammaFunctor {
DigammaFunctor(const T* input, T* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}

HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = Eigen::numext::digamma(input_[idx]);
}

private:
const T* input_;
T* output_;
int64_t numel_;
};

template <typename T>
struct DigammaGradFunctor {
DigammaGradFunctor(const T* dout, const T* x, T* output, int64_t numel)
: dout_(dout), x_(x), output_(output), numel_(numel) {}

HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = dout_[idx] * Eigen::numext::polygamma(T(1), x_[idx]);
}

private:
const T* dout_;
const T* x_;
T* output_;
int64_t numel_;
};

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class DigammaKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");

auto numel = x->numel();
auto* x_data = x->data<T>();
auto* out_data = out->mutable_data<T>(context.GetPlace(),
size_t(x->numel() * sizeof(T)));

auto& dev_ctx = context.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
DigammaFunctor<T> functor(x_data, out_data, numel);
for_range(functor);
}
};

template <typename DeviceContext, typename T>
class DigammaGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
const Tensor* x = context.Input<Tensor>("X");
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));

auto numel = d_out->numel();
auto* dout_data = d_out->data<T>();
auto* x_data = x->data<T>();
auto* dx_data = d_x->mutable_data<T>(
context.GetPlace(), static_cast<size_t>(numel * sizeof(T)));

auto& dev_ctx = context.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
DigammaGradFunctor<T> functor(dout_data, x_data, dx_data, numel);
for_range(functor);
}
};

} // namespace operators
} // namespace paddle
2 changes: 2 additions & 0 deletions python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,7 @@
from .tensor.math import prod # noqa: F401
from .tensor.math import broadcast_shape # noqa: F401
from .tensor.math import conj # noqa: F401
from .tensor.math import digamma # noqa: F401
from .tensor.math import neg # noqa: F401
from .tensor.math import lgamma # noqa: F401

Expand Down Expand Up @@ -487,5 +488,6 @@
'log10',
'concat',
'check_shape',
'digamma',
'standard_normal'
]
119 changes: 119 additions & 0 deletions python/paddle/fluid/tests/unittests/test_digamma_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import math
import numpy as np
from scipy.special import psi
import paddle
import paddle.fluid as fluid
import paddle.static as static
from op_test import OpTest


class TestDigammaOp(OpTest):
def setUp(self):
# switch to static
paddle.enable_static()

self.op_type = 'digamma'
self.init_dtype_type()
shape = (5, 32)
data = np.random.random(shape).astype(self.dtype) + 1
self.inputs = {'X': data}
result = np.ones(shape).astype(self.dtype)
result = psi(data)
self.outputs = {'Out': result}

def init_dtype_type(self):
self.dtype = np.float64

def test_check_output(self):
self.check_output()

def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')


class TestDigammaOpFp32(TestDigammaOp):
def init_dtype_type(self):
self.dtype = np.float32

def test_check_grad_normal(self):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

use default numeric_grad_delta is ok

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!

self.check_grad(['X'], 'Out')


class TestDigammaAPI(unittest.TestCase):
def setUp(self):
# switch to static
paddle.enable_static()
# prepare test attrs
self.dtypes = ["float32", "float64"]
self.places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
self._shape = [8, 3, 32, 32]

def test_in_static_mode(self):
def init_input_output(dtype):
input = np.random.random(self._shape).astype(dtype)
return {'x': input}, psi(input)

for dtype in self.dtypes:
input_dict, sc_res = init_input_output(dtype)
for place in self.places:
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=dtype)
out = paddle.digamma(x)

exe = static.Executor(place)
out_value = exe.run(feed=input_dict, fetch_list=[out.name])
self.assertEqual(
np.allclose(
out_value[0], sc_res, rtol=1e-5), True)

def test_in_dynamic_mode(self):
for dtype in self.dtypes:
input = np.random.random(self._shape).astype(dtype)
sc_res = psi(input)
for place in self.places:
# it is more convenient to use `guard` than `enable/disable_**` here
with fluid.dygraph.guard(place):
input_t = paddle.to_tensor(input)
res = paddle.digamma(input_t).numpy()
self.assertEqual(np.allclose(res, sc_res, rtol=1e-05), True)

def test_name_argument(self):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=self.dtypes[0])
out = paddle.digamma(x, name="digamma_res")
self.assertTrue("digamma_res" in out.name)

def test_dtype_error(self):
# in static mode
with self.assertRaises(TypeError):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype="int32")
out = paddle.digamma(x, name="digamma_res")

# in dynamic mode
with self.assertRaises(RuntimeError):
with fluid.dygraph.guard():
input = np.random.random(self._shape).astype("int32")
input_t = paddle.to_tensor(input)
res = paddle.digamma(input_t)


if __name__ == "__main__":
unittest.main()
4 changes: 3 additions & 1 deletion python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,7 @@
from .math import any # noqa: F401
from .math import broadcast_shape # noqa: F401
from .math import conj # noqa: F401
from .math import digamma # noqa: F401
from .math import neg # noqa: F401
from .math import lgamma # noqa: F401

Expand Down Expand Up @@ -346,5 +347,6 @@
'rank',
'shape',
'real',
'imag'
'imag',
'digamma'
]
Loading