Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions paddle/fluid/operators/digamma_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

2020 -> 2021

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/digamma_op.h"

namespace paddle {
namespace operators {

class DigammaOp : public framework::OperatorWithKernel {
public:
DigammaOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}

void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Digamma");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Digamma");

auto in_dims = ctx->GetInputDim("X");

ctx->SetOutputDim("Out", in_dims);
ctx->ShareLoD("X", "Out");
}
};

class DigammaOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of digamma operator.");
AddOutput("Out", "(Tensor), The output tensor of digamma operator.");
AddComment(R"DOC(
Digamma Operator.

This operator is used to perform elementwise digamma for input $X$.
$$out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }$$

)DOC");
}
};

class DigammaGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@Grad", "DigammaGrad");
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DigammaGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "DigammaGrad");

auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
}
};

template <typename T>
class DigammaGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

void Apply(GradOpPtr<T> retv) const override {
retv->SetType("digamma_grad");
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetInput("X", this->Input("X"));
retv->SetAttrMap(this->Attrs());
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(digamma, ops::DigammaOp, ops::DigammaOpMaker,
ops::DigammaGradOpMaker<paddle::framework::OpDesc>,
ops::DigammaGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(digamma_grad, ops::DigammaGradOp);

REGISTER_OP_CPU_KERNEL(
digamma, ops::DigammaKernel<paddle::platform::CPUDeviceContext, float>,
ops::DigammaKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
digamma_grad,
ops::DigammaGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::DigammaGradKernel<paddle::platform::CPUDeviceContext, double>);
64 changes: 64 additions & 0 deletions paddle/fluid/operators/digamma_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same above

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!


Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <unsupported/Eigen/SpecialFunctions>
#include "paddle/fluid/operators/digamma_op.h"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

here we only need the header digamma_op.h, remove other headers

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done!

#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/math/complex_functors.h"

namespace paddle {
namespace operators {

template <typename T, typename Enable = void>
struct CudaDigammaFunctor;

template <typename T>
struct CudaDigammaFunctor<T, math::NoComplex<T, math::Real<T>>> {
__device__ __forceinline__ T operator()(const T* args) const {
return Eigen::numext::digamma(args[0]);
}
};

template <typename T>
class DigammaKernel<platform::CUDADeviceContext, T>
Copy link
Contributor

@chenwhql chenwhql Jun 4, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

here is faster? maybe can test it and add some comments

Copy link
Contributor Author

@zyfncg zyfncg Jun 4, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, it isn't faster in the test, so removed it.

: public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");
out->mutable_data<math::Real<T>>(context.GetPlace());

auto& dev_ctx = context.device_context<platform::CUDADeviceContext>();
std::vector<const framework::Tensor*> ins = {x};
std::vector<framework::Tensor*> outs = {out};
auto functor = CudaDigammaFunctor<T>();
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T,
math::Real<T>>(dev_ctx, ins, &outs,
functor);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
digamma, ops::DigammaKernel<paddle::platform::CUDADeviceContext, float>,
ops::DigammaKernel<paddle::platform::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
digamma_grad,
ops::DigammaGradKernel<paddle::platform::CUDADeviceContext, float>,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

need special DigammaGradKernel here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

register a CudaKernel for digamma grad is necessary

ops::DigammaGradKernel<paddle::platform::CUDADeviceContext, double>);
99 changes: 99 additions & 0 deletions paddle/fluid/operators/digamma_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <unsupported/Eigen/SpecialFunctions>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
struct DigammaFunctor {
DigammaFunctor(const T* input, T* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}

HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = Eigen::numext::digamma(input_[idx]);
}

private:
const T* input_;
T* output_;
int64_t numel_;
};

template <typename T>
struct DigammaGradFunctor {
DigammaGradFunctor(const T* dout, const T* x, T* output, int64_t numel)
: dout_(dout), x_(x), output_(output), numel_(numel) {}

HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = dout_[idx] * Eigen::numext::polygamma(T(1), x_[idx]);
}

private:
const T* dout_;
const T* x_;
T* output_;
int64_t numel_;
};

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class DigammaKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");

auto numel = x->numel();
auto* x_data = x->data<T>();
auto* out_data = out->mutable_data<T>(context.GetPlace(),
size_t(x->numel() * sizeof(T)));

auto& dev_ctx = context.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
DigammaFunctor<T> functor(x_data, out_data, numel);
for_range(functor);
}
};

template <typename DeviceContext, typename T>
class DigammaGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
const Tensor* x = context.Input<Tensor>("X");
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));

auto numel = d_out->numel();
auto* dout_data = d_out->data<T>();
auto* x_data = x->data<T>();
auto* dx_data = d_x->mutable_data<T>(
context.GetPlace(), static_cast<size_t>(numel * sizeof(T)));

auto& dev_ctx = context.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
DigammaGradFunctor<T> functor(dout_data, x_data, dx_data, numel);
for_range(functor);
}
};

} // namespace operators
} // namespace paddle
4 changes: 3 additions & 1 deletion python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@
from .tensor.math import prod # noqa: F401
from .tensor.math import broadcast_shape # noqa: F401
from .tensor.math import conj # noqa: F401
from .tensor.math import digamma # noqa: F401

from .tensor.random import multinomial # noqa: F401
from .tensor.random import standard_normal # noqa: F401
Expand Down Expand Up @@ -493,5 +494,6 @@
'log2',
'log10',
'concat',
'check_shape'
'check_shape',
'digamma'
]
Loading