Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions paddle/fluid/operators/concat_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename T>
class ConcatNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
PADDLE_ENFORCE_NOT_NULL(ins[0],
platform::errors::NotFound(
"The first input tensor is not initalized."));
auto axis = ctx.Attr<int>("axis");

if (ctx.HasInput("AxisTensor")) {
PADDLE_THROW(platform::errors::NotFound(
"The AxisTensor is not supported on NPU now."));
}
axis = ComputeAxis(static_cast<int64_t>(axis),
static_cast<int64_t>(ins[0]->dims().size()));

auto place = ctx.GetPlace();
out->mutable_data<T>(place);

std::vector<framework::Tensor> inputs;
std::vector<std::string> names;
for (size_t i = 0; i < ins.size(); ++i) {
if (ins[i] && ins[i]->numel() > 0) {
inputs.push_back(*ins[i]);
names.push_back("x" + std::to_string(i));
} else {
continue;
}
}
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto runner = NpuOpRunner(
"ConcatD", {inputs}, {*out},
{{"concat_dim", axis}, {"N", static_cast<int>(inputs.size())}});
runner.AddInputNames(names);
runner.Run(stream);
}
};

template <typename T>
class ConcatGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out_grad =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
auto outs =
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

{
auto dx = outs;
auto x = ins;
for (size_t i = 0; i < dx.size(); ++i) {
if (dx[i] != nullptr) {
dx[i]->set_lod(x[i]->lod());
}
}
}
PADDLE_ENFORCE_NOT_NULL(ins[0],
platform::errors::NotFound(
"The first input tensor is not initalized."));

auto axis = ctx.Attr<int>("axis");

axis = ComputeAxis(static_cast<int64_t>(axis),
static_cast<int64_t>(ins[0]->dims().size()));
// get output tensor that the name is not kEmptyVarName
std::vector<framework::Tensor> outputs;
std::vector<int> sizes;
for (size_t j = 0; j < outs.size(); ++j) {
if (out_var_names[j] != framework::kEmptyVarName &&
outs[j]->numel() != 0UL) {
outs[j]->mutable_data<T>(ctx.GetPlace());
outputs.push_back(*outs[j]);
sizes.push_back(outs[j]->dims()[axis]);
}
}
auto runner =
NpuOpRunner("SplitVD", {*out_grad}, outputs,
{{"split_dim", axis},
{"size_splits", sizes},
{"num_split", static_cast<int>(outputs.size())}});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(concat, ops::ConcatNPUKernel<float>,
ops::ConcatNPUKernel<paddle::platform::float16>,
ops::ConcatNPUKernel<int>);

REGISTER_OP_NPU_KERNEL(concat_grad, ops::ConcatGradNPUKernel<float>,
ops::ConcatGradNPUKernel<paddle::platform::float16>,
ops::ConcatGradNPUKernel<int>);
3 changes: 3 additions & 0 deletions paddle/fluid/operators/npu_op_runner.cc
Original file line number Diff line number Diff line change
Expand Up @@ -256,6 +256,9 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor) {
auto *desc = aclCreateTensorDesc(dtype, dims.size(), dims.data(), format);
PADDLE_ENFORCE_NOT_NULL(
desc, platform::errors::External("Call aclCreateTensorDesc failed."));
PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
PADDLE_ENFORCE_NPU_SUCCESS(
aclSetTensorStorageShape(desc, dims.size(), dims.data()));
return desc;
}

Expand Down
115 changes: 115 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_concat_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestConcat(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "concat"
self.place = paddle.NPUPlace(4)
self.init_dtype()
self.init_test_data()

self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
self.attrs = {'axis': self.axis}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis

self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.actual_axis)
}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)

def init_test_data(self):
self.x0 = np.random.random((1, 4, 50)).astype(self.dtype)
self.x1 = np.random.random((2, 4, 50)).astype(self.dtype)
self.x2 = np.random.random((3, 4, 50)).astype(self.dtype)
self.axis = 0

def test_check_grad(self):
self.check_grad_with_place(
self.place, ['x0'], 'Out', check_dygraph=False)
self.check_grad_with_place(
self.place, ['x1'], 'Out', check_dygraph=False)
self.check_grad_with_place(
self.place, ['x2'], 'Out', check_dygraph=False)


class TestConcatFP16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "concat"
self.place = paddle.NPUPlace(4)
self.init_dtype()
self.init_test_data()

self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
self.attrs = {'axis': self.axis}
if self.axis < 0:
self.actual_axis = self.axis + len(self.x0.shape)
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
else:
self.actual_axis = self.axis

self.outputs = {
'Out': np.concatenate(
(self.x0, self.x1, self.x2), axis=self.actual_axis)
}

def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True

def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)

def init_test_data(self):
self.x0 = np.random.random((1, 4, 50)).astype(self.dtype)
self.x1 = np.random.random((2, 4, 50)).astype(self.dtype)
self.x2 = np.random.random((3, 4, 50)).astype(self.dtype)
self.axis = 0


if __name__ == '__main__':
unittest.main()