-
Notifications
You must be signed in to change notification settings - Fork 5.9k
【NPU】Support npu kernel for matmul op #31544
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 2 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,151 @@ | ||
| /* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include <memory> | ||
| #include <string> | ||
|
|
||
| #include "paddle/fluid/operators/matmul_v2_op.h" | ||
| #include "paddle/fluid/operators/npu_op_runner.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| template <typename DeviceContext, typename T> | ||
| class MatMulV2NPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto* x = ctx.Input<framework::Tensor>("X"); | ||
| auto* y = ctx.Input<framework::Tensor>("Y"); | ||
| auto* out = ctx.Output<framework::Tensor>("Out"); | ||
| bool transpose_x = ctx.Attr<bool>("trans_x"); | ||
| bool transpose_y = ctx.Attr<bool>("trans_y"); | ||
|
|
||
| if (x->dims().size() == 2) { | ||
| out->mutable_data<T>(ctx.GetPlace()); | ||
|
|
||
| auto runner = NpuOpRunner( | ||
| "MatMul", {*x, *y}, {*out}, | ||
| {{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}}); | ||
|
|
||
| auto stream = | ||
| ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
| .stream(); | ||
| runner.Run(stream); | ||
|
|
||
| } else if (x->dims().size() > 2) { | ||
| out->mutable_data<T>(ctx.GetPlace()); | ||
|
|
||
| auto runner = | ||
| NpuOpRunner("BatchMatMul", {*x, *y}, {*out}, | ||
| {{"adj_x1", transpose_x}, {"adj_x2", transpose_y}}); | ||
|
|
||
| auto stream = | ||
| ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
| .stream(); | ||
| runner.Run(stream); | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template <typename DeviceContext, typename T> | ||
| class MatMulV2GradNPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto* x = ctx.Input<framework::Tensor>("X"); | ||
| auto* y = ctx.Input<framework::Tensor>("Y"); | ||
| auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
| auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
| auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); | ||
|
Comment on lines
+68
to
+69
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. dx or dy can be nullptr, better add if branch.
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. fixed |
||
| bool transpose_y = ctx.Attr<bool>("trans_y"); | ||
| auto stream = | ||
| ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
| .stream(); | ||
|
|
||
| if (x->dims().size() == 2) { | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 建议对x和y的维度为1进行判断
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. python端有判断& ascend_parser.py没有用到 可以先忽略 |
||
| if (transpose_y) { | ||
| dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dx = | ||
| NpuOpRunner("MatMul", {*dout, *y}, {*dx}, | ||
| {{"transpose_x1", false}, {"transpose_x2", false}}); | ||
|
|
||
| runner_dx.Run(stream); | ||
|
|
||
| dy->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dy = | ||
| NpuOpRunner("MatMul", {*dout, *x}, {*dy}, | ||
| {{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
|
||
| runner_dy.Run(stream); | ||
|
|
||
| } else { | ||
| dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dx = | ||
| NpuOpRunner("MatMul", {*dout, *y}, {*dx}, | ||
| {{"transpose_x1", false}, {"transpose_x2", true}}); | ||
|
|
||
| runner_dx.Run(stream); | ||
|
|
||
| dy->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dy = | ||
| NpuOpRunner("MatMul", {*x, *dout}, {*dy}, | ||
| {{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
|
||
| runner_dy.Run(stream); | ||
| } | ||
|
|
||
| } else if (x->dims().size() > 2) { | ||
| if (transpose_y) { | ||
| dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx}, | ||
| {{"adj_x1", false}, {"adj_x2", false}}); | ||
|
|
||
| runner_dx.Run(stream); | ||
|
|
||
| dy->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dy = NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy}, | ||
| {{"adj_x1", true}, {"adj_x2", false}}); | ||
|
|
||
| runner_dy.Run(stream); | ||
|
|
||
| } else { | ||
| dx->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dx = NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx}, | ||
| {{"adj_x1", false}, {"adj_x2", true}}); | ||
|
|
||
| runner_dx.Run(stream); | ||
|
|
||
| dy->mutable_data<T>(ctx.GetPlace()); | ||
| auto runner_dy = NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy}, | ||
| {{"adj_x1", true}, {"adj_x2", false}}); | ||
|
|
||
| runner_dy.Run(stream); | ||
| } | ||
| } | ||
| } | ||
| }; | ||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
|
|
||
| REGISTER_OP_NPU_KERNEL( | ||
| matmul_v2, | ||
| ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
| ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, | ||
| paddle::platform::float16>); | ||
| REGISTER_OP_NPU_KERNEL( | ||
| matmul_v2_grad, | ||
| ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
| ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, | ||
| paddle::platform::float16>); | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,210 @@ | ||
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from __future__ import print_function | ||
|
|
||
| import numpy as np | ||
| import unittest | ||
| import sys | ||
| sys.path.append("..") | ||
| from op_test import OpTest | ||
| import paddle | ||
| import paddle.fluid as fluid | ||
|
|
||
| paddle.enable_static() | ||
| SEED = 2021 | ||
|
|
||
|
|
||
| @unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
| "core is not compiled with NPU") | ||
| def reference_matmul(X, Y, transpose_X=False, transpose_Y=False): | ||
| """Reference forward implementation using np.matmul.""" | ||
| # np.matmul does not support the transpose flags, so we manually | ||
| # transpose X and Y appropriately. | ||
| if transpose_X: | ||
| if X.ndim == 1: | ||
| X = X.reshape((X.size, )) | ||
| elif X.ndim == 2: | ||
| X = X.T | ||
| else: | ||
| dim = [i for i in range(len(X.shape))] | ||
| dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1] | ||
| X = np.transpose(X, tuple(dim)) | ||
| if transpose_Y: | ||
| if Y.ndim == 1: | ||
| Y = Y.reshape((Y.size, )) | ||
| else: | ||
| dim = [i for i in range(len(Y.shape))] | ||
| dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1] | ||
| Y = np.transpose(Y, tuple(dim)) | ||
|
|
||
| Out = np.matmul(X, Y) | ||
| if not Out.shape: | ||
| # We do not support 0-dimensional Tensors (scalars). So where | ||
| # np.matmul outputs a scalar, we must convert to a Tensor of | ||
| # shape (1, ) instead. | ||
| # Everywhere else, we are compatible with np.matmul. | ||
| Out = np.array([Out], dtype="float64") | ||
| return Out | ||
|
|
||
|
|
||
| class TestMatMul(OpTest): | ||
| def config(self): | ||
| self.x_shape = (100, 24) | ||
| self.y_shape = (24, 100) | ||
| self.trans_x = False | ||
| self.trans_y = False | ||
|
|
||
| def setUp(self): | ||
| self.set_npu() | ||
| self.op_type = "matmul_v2" | ||
| self.place = paddle.NPUPlace(0) | ||
| self.init_dtype() | ||
| self.config() | ||
| np.random.seed(SEED) | ||
| x = np.random.random(self.x_shape).astype(self.dtype) | ||
| y = np.random.random(self.y_shape).astype(self.dtype) | ||
| # -0.1 ~ 0.1 | ||
| x = -0.1 + 0.2 * x | ||
| y = -0.1 + 0.2 * y | ||
| result = reference_matmul(x, y, self.trans_x, self.trans_y) | ||
| result = result.astype(self.dtype) | ||
| self.inputs = { | ||
| 'X': x, | ||
| 'Y': y, | ||
| } | ||
| self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y} | ||
| self.outputs = {'Out': result} | ||
|
|
||
| def set_npu(self): | ||
| self.__class__.use_npu = True | ||
| self.__class__.no_need_check_grad = True | ||
|
|
||
| def init_dtype(self): | ||
| self.dtype = np.float32 | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5) | ||
|
|
||
|
|
||
| # TODO(ascendrc): Add grad test | ||
| # def test_check_grad(self): | ||
| # if self.dtype == np.float16: | ||
| # return | ||
| # self.check_grad(['X'], 'Out') | ||
| # | ||
| class TestMatMul2(TestMatMul): | ||
| """ | ||
| case 2 | ||
| """ | ||
|
|
||
| def config(self): | ||
| self.x_shape = (32, 24) | ||
| self.y_shape = (32, 24) | ||
| self.trans_x = False | ||
| self.trans_y = True | ||
|
|
||
|
|
||
| class TestMatMul3(TestMatMul): | ||
| """ | ||
| case 3 | ||
| """ | ||
|
|
||
| def init_dtype(self): | ||
| self.dtype = np.float16 | ||
|
|
||
|
|
||
| class TestMatMul4(TestMatMul): | ||
| """ | ||
| case 4 dim=3 | ||
| """ | ||
|
|
||
| def config(self): | ||
| self.x_shape = (2, 3, 4) | ||
| self.y_shape = (2, 4, 3) | ||
| self.trans_x = False | ||
| self.trans_y = False | ||
|
|
||
|
|
||
| @unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
| "core is not compiled with NPU") | ||
| class TestMatMulNet(unittest.TestCase): | ||
| def _test(self, run_npu=True): | ||
| main_prog = paddle.static.Program() | ||
| startup_prog = paddle.static.Program() | ||
| main_prog.random_seed = SEED | ||
| startup_prog.random_seed = SEED | ||
| np.random.seed(SEED) | ||
|
|
||
| a_np = np.random.random(size=(2, 3)).astype('float32') | ||
| b_np = np.random.random(size=(2, 3)).astype('float32') | ||
| c_np = np.random.random(size=(3, 2)).astype('float32') | ||
| d_np = np.random.random(size=(3, 2)).astype('float32') | ||
| label_np = np.random.randint(2, size=(2, 1)).astype('int64') | ||
|
|
||
| with paddle.static.program_guard(main_prog, startup_prog): | ||
| a = paddle.static.data(name="a", shape=[2, 3], dtype='float32') | ||
| b = paddle.static.data(name="b", shape=[2, 3], dtype='float32') | ||
| c = paddle.static.data(name="c", shape=[3, 2], dtype='float32') | ||
| d = paddle.static.data(name="d", shape=[3, 2], dtype='float32') | ||
| label = paddle.static.data( | ||
| name="label", shape=[2, 1], dtype='int64') | ||
|
|
||
| sum_1 = paddle.add(a, b) | ||
| sum_2 = paddle.add(c, d) | ||
| result = paddle.matmul(sum_1, sum_2) | ||
|
|
||
| fc_1 = fluid.layers.fc(input=result, size=8) | ||
| prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') | ||
|
|
||
| cost = fluid.layers.cross_entropy(input=prediction, label=label) | ||
| loss = fluid.layers.reduce_mean(cost) | ||
| sgd = fluid.optimizer.SGD(learning_rate=0.01) | ||
| sgd.minimize(loss) | ||
|
|
||
| if run_npu: | ||
| place = paddle.NPUPlace(0) | ||
| else: | ||
| place = paddle.CPUPlace() | ||
| exe = paddle.static.Executor(place) | ||
| exe.run(startup_prog) | ||
|
|
||
| print("Start run on {}".format(place)) | ||
| for epoch in range(100): | ||
|
|
||
| pred_res, loss_res = exe.run(main_prog, | ||
| feed={ | ||
| "a": a_np, | ||
| "b": b_np, | ||
| "c": c_np, | ||
| "d": d_np, | ||
| "label": label_np | ||
| }, | ||
| fetch_list=[prediction, loss]) | ||
| if epoch % 10 == 0: | ||
| print("Epoch {} | Prediction[0]: {}, Loss: {}".format( | ||
| epoch, pred_res[0], loss_res)) | ||
|
|
||
| return pred_res, loss_res | ||
|
|
||
| def test_npu(self): | ||
| cpu_pred, cpu_loss = self._test(False) | ||
| npu_pred, npu_loss = self._test(True) | ||
|
|
||
| self.assertTrue(np.allclose(npu_pred, cpu_pred)) | ||
| self.assertTrue(np.allclose(npu_loss, cpu_loss)) | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
建议对x和y的维度为1进行判断