-
Notifications
You must be signed in to change notification settings - Fork 5.9k
[NPU] npu support transpose
#31486
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
[NPU] npu support transpose
#31486
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
b8d1789
[npu] support npu for kernel `transpose`
Meiyim e7f149b
+cmake
Meiyim 38884f7
+add init
Meiyim 053a734
cleanup
Meiyim fd742d7
cleanup
Meiyim 2363352
fp16 python unit test
Meiyim 8ab8275
fix python unit test
Meiyim File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,83 @@ | ||
| /* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #ifdef PADDLE_WITH_ASCEND_CL | ||
| #include <memory> | ||
| #include <string> | ||
| #include <iostream> | ||
|
|
||
| #include "paddle/fluid/operators/npu_op_runner.h" | ||
| #include "paddle/fluid/framework/op_registry.h" | ||
| #include "paddle/fluid/operators/expand_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| template <typename DeviceContext, typename T> | ||
| class TransposeNPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto* x = ctx.Input<framework::LoDTensor>("X"); | ||
| auto* out = ctx.Output<framework::LoDTensor>("Out"); | ||
| std::vector<int> axis = ctx.Attr<std::vector<int>>("axis"); | ||
| framework::NPUAttributeMap attr_input = {{"perm", axis}}; | ||
| out->mutable_data<T>(ctx.device_context().GetPlace()); | ||
| auto runner = NpuOpRunner("TransposeD", {*x}, {*out}, attr_input); | ||
| auto stream = ctx.template device_context<paddle::platform::NPUDeviceContext>().stream(); | ||
| runner.Run(stream); | ||
|
|
||
| } | ||
| }; | ||
|
|
||
| template <typename T> | ||
| class TransposeGradNPUKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext &ctx) const override { | ||
| auto* out_grad = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out")); | ||
| auto* x_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X")); | ||
| std::vector<int> axis = ctx.Attr<std::vector<int>>("axis"); | ||
| std::vector<int> reversed_axis(axis); | ||
| for (size_t i = 0; i < axis.size(); i++) { | ||
| reversed_axis[axis[i]] = i; | ||
| } | ||
|
|
||
| framework::NPUAttributeMap attr_input = {{"perm", reversed_axis}}; | ||
| auto runner = NpuOpRunner("TransposeD", {*out_grad}, {*x_grad}, attr_input); | ||
| auto stream = ctx.template device_context<paddle::platform::NPUDeviceContext>().stream(); | ||
| runner.Run(stream); | ||
| } | ||
| }; | ||
|
|
||
| } | ||
| } | ||
|
|
||
| namespace ops = paddle::operators; | ||
|
|
||
| REGISTER_OP_NPU_KERNEL(transpose, | ||
| ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
| ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, paddle::platform::float16>, | ||
| ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
| ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, uint8_t>, | ||
| ops::TransposeNPUKernel<paddle::platform::NPUDeviceContext, int8_t> | ||
| ); | ||
|
|
||
| REGISTER_OP_NPU_KERNEL(transpose_grad, | ||
| ops::TransposeGradNPUKernel<float>, | ||
| ops::TransposeGradNPUKernel<paddle::platform::float16>, | ||
| ops::TransposeGradNPUKernel<int>, | ||
| ops::TransposeGradNPUKernel<uint8_t>, | ||
| ops::TransposeGradNPUKernel<int8_t> | ||
| ); | ||
|
|
||
|
|
||
|
|
||
| #endif | ||
|
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,143 @@ | ||
| /* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #ifndef _WIN32 | ||
| #include <unistd.h> | ||
| #endif | ||
|
|
||
| #include <string> | ||
| #include <cmath> | ||
| #include <thread> // NOLINT | ||
| #include <vector> | ||
| #include <numeric> | ||
| #include <iostream> | ||
|
|
||
| #include "gtest/gtest.h" | ||
| #include "paddle/fluid/framework/op_registry.h" | ||
| #include "paddle/fluid/framework/operator.h" | ||
| #include "paddle/fluid/framework/program_desc.h" | ||
| #include "paddle/fluid/operators/dropout_op.h" | ||
| #include "paddle/fluid/operators/math/math_function.h" | ||
| #include "paddle/fluid/string/printf.h" | ||
|
|
||
| namespace f = paddle::framework; | ||
| namespace p = paddle::platform; | ||
| namespace m = paddle::operators::math; | ||
|
|
||
| USE_OP(transpose); | ||
| USE_OP_DEVICE_KERNEL(transpose, NPU); | ||
|
|
||
|
|
||
| template <typename T> | ||
| void Compare(f::Scope* scope, const p::DeviceContext& ctx) { | ||
| // init | ||
| auto x = scope->Var("X"); | ||
| auto out = scope->Var("Out"); | ||
| auto* x_t = x->GetMutable<f::LoDTensor>(); | ||
| auto* out_t = out->GetMutable<f::LoDTensor>(); | ||
| auto place = ctx.GetPlace(); | ||
|
|
||
| int dim0 = 2; | ||
| int dim1 = 3; | ||
| TensorFromVector(std::vector<T>({0, 1, 2, 3, 4, 5}), ctx, x_t); | ||
| ctx.Wait(); | ||
| x_t->Resize({dim0, dim1}); | ||
| out_t->Resize({dim0, dim1}); | ||
| ctx.Wait(); | ||
| out_t->mutable_data<T>(place); | ||
| ctx.Wait(); | ||
| f::AttributeMap attrs = { | ||
| {"axis", std::vector<int>({1, 0})}, | ||
| {"data_format", std::string("AnyLayout")} | ||
| }; | ||
| auto op = f::OpRegistry::CreateOp("transpose", {{"X", {"X"}}}, | ||
| {{"Out", {"Out"}}}, attrs); | ||
| ctx.Wait(); | ||
| op->Run(*scope, place); | ||
| ctx.Wait(); | ||
| std::vector<T> out_v; | ||
| TensorToVector(*out_t, ctx, &out_v); | ||
| ctx.Wait(); | ||
|
|
||
| EXPECT_EQ(out_t->numel(), dim0 * dim1); | ||
| EXPECT_EQ(out_v[0], 0); | ||
| EXPECT_EQ(out_v[1], 3); | ||
| EXPECT_EQ(out_v[2], 1); | ||
| EXPECT_EQ(out_v[3], 4); | ||
| EXPECT_EQ(out_v[4], 2); | ||
| EXPECT_EQ(out_v[5], 5); | ||
| } | ||
|
|
||
|
|
||
| template <typename T> | ||
| void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) { | ||
| // init | ||
| auto x = scope->Var("X"); | ||
| auto x_grad = scope->Var("X@GRAD"); | ||
| auto out = scope->Var("Out"); | ||
| auto out_grad = scope->Var("Out@GRAD"); | ||
|
|
||
| auto* x_grad_t = x_grad->GetMutable<f::LoDTensor>(); | ||
| auto* x_t = x->GetMutable<f::LoDTensor>(); | ||
| auto* out_grad_t = out_grad->GetMutable<f::LoDTensor>(); | ||
| auto* out_t = out->GetMutable<f::LoDTensor>(); | ||
| int dim0 = 2; | ||
| int dim1 = 3; | ||
| auto place = ctx.GetPlace(); | ||
|
|
||
| TensorFromVector(std::vector<T>({0, 1, 2, 3, 4, 5}), ctx, out_grad_t); | ||
| TensorFromVector(std::vector<T>({0, 1, 2, 3, 4, 5}), ctx, x_t); | ||
| ctx.Wait(); | ||
| x_grad_t->Resize({dim0, dim1}); | ||
| x_t->Resize({dim0, dim1}); | ||
| out_grad_t->Resize({dim0, dim1}); | ||
| out_t->Resize({dim0, dim1}); | ||
|
|
||
| x_grad_t->mutable_data<T>(place); | ||
| out_t->mutable_data<T>(place); | ||
| ctx.Wait(); | ||
| f::AttributeMap attrs = { | ||
| {"axis", std::vector<int>({1, 0})}, | ||
| {"data_format", std::string("AnyLayout")} | ||
| }; | ||
| auto op = f::OpRegistry::CreateOp( | ||
| "transpose_grad", | ||
| {{"Out@GRAD", {"Out@GRAD"}}, {"X", {"X"}}, {"Out", {"Out"}}}, | ||
| {{"X@GRAD", {"X@GRAD"}}}, attrs); | ||
| op->Run(*scope, place); | ||
| ctx.Wait(); | ||
| std::vector<T> out_v; | ||
| TensorToVector(*x_grad_t, ctx, &out_v); | ||
| ctx.Wait(); | ||
|
|
||
| EXPECT_EQ(x_grad_t->numel(), dim0 * dim1); | ||
| EXPECT_EQ(out_v[0], 0); | ||
| EXPECT_EQ(out_v[1], 3); | ||
| EXPECT_EQ(out_v[2], 1); | ||
| EXPECT_EQ(out_v[3], 4); | ||
| EXPECT_EQ(out_v[4], 2); | ||
| EXPECT_EQ(out_v[5], 5); | ||
|
|
||
| } | ||
|
|
||
|
|
||
| TEST(transpose, NPU_fp32) { | ||
| f::Scope scope; | ||
| p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
| Compare<float>(&scope, ctx); | ||
| } | ||
|
|
||
| TEST(transpose_grad, NPU_fp32) { | ||
| f::Scope scope; | ||
| p::NPUDeviceContext ctx(p::NPUPlace(0)); | ||
| CompareGrad<float>(&scope, ctx); | ||
| } | ||
|
|
74 changes: 74 additions & 0 deletions
74
python/paddle/fluid/tests/unittests/npu/test_transpose_op_npu.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,74 @@ | ||
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from __future__ import print_function | ||
|
|
||
| import numpy as np | ||
| import unittest | ||
| import sys | ||
| sys.path.append("..") | ||
| from op_test import OpTest, _set_use_system_allocator | ||
| import paddle | ||
| import paddle.fluid as fluid | ||
|
|
||
| paddle.enable_static() | ||
|
|
||
|
|
||
| @unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
| "core is not compiled with NPU") | ||
| class TestTransposeOp(OpTest): | ||
| def setUp(self): | ||
| self.set_npu() | ||
| self.op_type = "transpose" | ||
| self.place = paddle.NPUPlace(0) | ||
| self.init_dtype() | ||
| self.init_input_output() | ||
| self.init_kernel_type() | ||
| self.init_axis() | ||
|
|
||
| self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)} | ||
| self.attrs = {'axis': [0, 2, 1, 3], 'data_format': 'AnyLayout'} | ||
| self.outputs = {'Out': self.out} | ||
|
|
||
| def set_npu(self): | ||
| self.__class__.use_npu = True | ||
|
|
||
| def init_kernel_type(self): | ||
| self.use_mkldnn = False | ||
|
|
||
| def init_input_output(self): | ||
| self.x = np.random.uniform(0.1, 1, [8, 512, 12, 64]).astype(self.dtype) | ||
| self.out = np.transpose(self.x, [0, 2, 1, 3]) | ||
|
|
||
| def init_dtype(self): | ||
| self.dtype = np.float32 | ||
|
|
||
| def init_axis(self): | ||
| self.axis = -1 | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output_with_place(self.place, check_dygraph=False) | ||
|
|
||
|
|
||
| @unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
| "core is not compiled with NPU") | ||
| class TestTransposeOpFP16(TestTransposeOp): | ||
| no_need_check_grad = True | ||
|
|
||
| def init_dtype(self): | ||
| self.dtype = np.float16 | ||
|
|
||
Meiyim marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.