Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions paddle/fluid/operators/dropout_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/platform/xpu_header.h"
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
static std::map<int, float*> mask_data_tables;
static const int max_data_size = 32 * 1024 * 1024;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

命名不符合google c++ code style

static std::mutex s_mask_data_table_lock;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个mutex是这个op特有的吗?

template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
const auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
float dropout_prob = context.Attr<float>("dropout_prob");
auto dropout_implementation =
context.Attr<std::string>("dropout_implementation");
float* mask_data_table = nullptr;
PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
platform::errors::InvalidArgument(
("Input(Seed) not supported on XPU")));
if (!context.Attr<bool>("is_test")) {
int dev_id =
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
int prop = static_cast<int>(dropout_prob * 100);
int is_upscale = (dropout_implementation == "upscale_in_train");
/* mask_data_tables key contains 3 part:
* | 31-16 | 15-8 | 7-0 |
* | dev_id | prob | is_upscale |
*/
int index = (dev_id << 16) + (prop << 8) + is_upscale;
std::lock_guard<std::mutex> lock(s_mask_data_table_lock);
if (mask_data_tables.find(index) == mask_data_tables.end()) {
float* mask_data_host = new float[max_data_size];
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这种new可以用Paddle底层的统一内存管理

std::random_device rnd;
std::minstd_rand engine;
int seed =
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
engine.seed(seed);
std::uniform_real_distribution<float> dist(0, 1);
for (size_t i = 0; i < max_data_size; ++i) {
if (dist(engine) < dropout_prob) {
mask_data_host[i] = 0.0f;
} else {
if (is_upscale) {
mask_data_host[i] = 1.0f / static_cast<T>(1.0f - dropout_prob);
} else {
mask_data_host[i] = 1.0;
}
}
}
PADDLE_ENFORCE(
xpu_malloc(reinterpret_cast<void**>(&mask_data_table),
max_data_size * sizeof(float)) == xpu::Error_t::SUCCESS,
"XPU no enough memory");
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
mask_data_table, platform::CPUPlace(), mask_data_host,
max_data_size * sizeof(float));
mask_data_tables[index] = mask_data_table;
free(mask_data_host);
} else {
mask_data_table = mask_data_tables[index];
}
}
if (!context.Attr<bool>("is_test")) { // Train
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
size_t size = framework::product(mask->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::dropout(dev_ctx.x_context(), mask_data_table, x_data,
mask_data, y_data, max_data_size, size);
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
platform::errors::InvalidArgument("XPU kernel error!"));
} else { // Infer
float scale = 0.0f;
if (dropout_implementation == "upscale_in_train") {
scale = 1.0f;
} else {
scale = static_cast<T>(1.0f - dropout_prob);
}
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::scale(dev_ctx.x_context(), x->numel(), scale, 0.0f, 0,
x_data, y_data);
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
platform::errors::InvalidArgument("XPU kernel error!"));
}
}
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE(!context.Attr<bool>("is_test"),
"GradOp is only callable when is_test is false");
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = context.Input<Tensor>("Mask");
grad_x->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::elementwise_mul(dev_ctx.x_context(), grad_y->data<T>(),
mask->data<T>(), grad_x->data<T>(),
grad_y->numel());
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
dropout_grad,
ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
68 changes: 68 additions & 0 deletions paddle/fluid/operators/log_loss_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/log_loss_op.h"
#include <memory>
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T, typename AttrType = T>
class LogLossXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* predict = ctx.Input<Tensor>("Predicted");
auto* labels = ctx.Input<Tensor>("Labels");
auto* loss = ctx.Output<Tensor>("Loss");
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
loss->mutable_data<T>(ctx.GetPlace());
int n = predict->numel();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r =
xpu::log_loss_fwd(dev_ctx.x_context(), n, epsilon, predict->data<T>(),
labels->data<T>(), loss->data<T>());
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};
template <typename DeviceContext, typename T, typename AttrType = T>
class LogLossGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* predict = ctx.Input<Tensor>("Predicted");
auto* labels = ctx.Input<Tensor>("Labels");
auto* dloss = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto* dpred = ctx.Output<Tensor>(framework::GradVarName("Predicted"));
if (!dpred) {
return;
}
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
dpred->mutable_data<T>(ctx.GetPlace());
int n = predict->numel();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::log_loss_bwd(dev_ctx.x_context(), n, epsilon,
predict->data<T>(), labels->data<T>(),
dloss->data<T>(), dpred->data<T>());
PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true,
platform::errors::InvalidArgument("XPU kernel error!"));
}
};

} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
log_loss, ops::LogLossXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
log_loss_grad,
ops::LogLossGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif
112 changes: 112 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_dropout_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestDropoutOp(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64)).astype('uint8')
}

def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad_normal(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')


class TestDropoutOpInput1d(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((2000, )).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((2000)).astype('uint8')
}

def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad_normal(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out')


class TestDropoutOp2(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
self.outputs = {
'Out': np.zeros((32, 64)).astype('float32'),
'Mask': np.zeros((32, 64)).astype('uint8')
}


class TestDropoutOp3(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64, 2)).astype('uint8')
}


class TestDropoutOp6(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
self.attrs = {
'dropout_prob': 0.0,
'fix_seed': True,
'is_test': False,
'dropout_implementation': 'upscale_in_train'
}
self.outputs = {
'Out': self.inputs['X'],
'Mask': np.ones((32, 64, 2)).astype('uint8')
}


if __name__ == '__main__':
unittest.main()
65 changes: 65 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_log_loss_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
sys.path.append("..")
import paddle.fluid.core as core
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


def sigmoid_array(x):
return 1 / (1 + np.exp(-x))


class TestXPULogLossOp(OpTest):
def setUp(self):
self.op_type = 'log_loss'
samples_num = 100

x = np.random.random((samples_num, 1)).astype("float32")
predicted = sigmoid_array(x)
labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32")
epsilon = 1e-7
self.inputs = {
'Predicted': predicted,
'Labels': labels,
}

self.attrs = {'epsilon': epsilon}
loss = -labels * np.log(predicted + epsilon) - (
1 - labels) * np.log(1 - predicted + epsilon)
self.outputs = {'Loss': loss}

def test_check_output(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad(self):
if paddle.is_compiled_with_xpu():
paddle.enable_static()
place = paddle.XPUPlace(0)
self.check_grad(['Predicted'], 'Loss')


if __name__ == '__main__':
unittest.main()