Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
306 changes: 306 additions & 0 deletions python/paddle/fluid/tests/unittests/dygraph_to_static/test_word2vec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import io
import os
import sys
import requests
from collections import OrderedDict
import math
import random
import numpy as np
import paddle
import paddle.fluid as fluid
import unittest

from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.dygraph import ProgramTranslator
from paddle.fluid.dygraph import declarative


def fake_text():
corpus = []
for i in range(100):
line = "i love paddlepaddle"
corpus.append(line)
return corpus


corpus = fake_text()


def data_preprocess(corpus):
new_corpus = []
for line in corpus:
line = line.strip().lower()
line = line.split(" ")
new_corpus.append(line)

return new_corpus


corpus = data_preprocess(corpus)


def build_dict(corpus, min_freq=3):
word_freq_dict = dict()
for line in corpus:
for word in line:
if word not in word_freq_dict:
word_freq_dict[word] = 0
word_freq_dict[word] += 1

word_freq_dict = sorted(
word_freq_dict.items(), key=lambda x: x[1], reverse=True)

word2id_dict = dict()
word2id_freq = dict()
id2word_dict = dict()

word2id_freq[0] = 1.
word2id_dict['[oov]'] = 0
id2word_dict[0] = '[oov]'

for word, freq in word_freq_dict:

if freq < min_freq:
word2id_freq[0] += freq
continue

curr_id = len(word2id_dict)
word2id_dict[word] = curr_id
word2id_freq[word2id_dict[word]] = freq
id2word_dict[curr_id] = word

return word2id_freq, word2id_dict, id2word_dict


word2id_freq, word2id_dict, id2word_dict = build_dict(corpus)
vocab_size = len(word2id_freq)
print("there are totoally %d different words in the corpus" % vocab_size)
for _, (word, word_id) in zip(range(50), word2id_dict.items()):
print("word %s, its id %d, its word freq %d" %
(word, word_id, word2id_freq[word_id]))


def convert_corpus_to_id(corpus, word2id_dict):
new_corpus = []
for line in corpus:
new_line = [
word2id_dict[word]
if word in word2id_dict else word2id_dict['[oov]'] for word in line
]
new_corpus.append(new_line)
return new_corpus


corpus = convert_corpus_to_id(corpus, word2id_dict)


def subsampling(corpus, word2id_freq):
def keep(word_id):
return random.uniform(0, 1) < math.sqrt(1e-4 / word2id_freq[word_id] *
len(corpus))

new_corpus = []
for line in corpus:
new_line = [word for word in line if keep(word)]
new_corpus.append(line)
return new_corpus


corpus = subsampling(corpus, word2id_freq)


def build_data(corpus,
word2id_dict,
word2id_freq,
max_window_size=3,
negative_sample_num=10):

dataset = []

for line in corpus:
for center_word_idx in range(len(line)):
window_size = random.randint(1, max_window_size)
center_word = line[center_word_idx]

positive_word_range = (max(0, center_word_idx - window_size), min(
len(line) - 1, center_word_idx + window_size))
positive_word_candidates = [
line[idx]
for idx in range(positive_word_range[0], positive_word_range[1]
+ 1)
if idx != center_word_idx and line[idx] != line[center_word_idx]
]

if not positive_word_candidates:
continue

for positive_word in positive_word_candidates:
dataset.append((center_word, positive_word, 1))

i = 0
while i < negative_sample_num:
negative_word_candidate = random.randint(0, vocab_size - 1)

if negative_word_candidate not in positive_word_candidates:
dataset.append((center_word, negative_word_candidate, 0))
i += 1

return dataset


dataset = build_data(corpus, word2id_dict, word2id_freq)
for _, (center_word, target_word, label) in zip(range(50), dataset):
print("center_word %s, target %s, label %d" %
(id2word_dict[center_word], id2word_dict[target_word], label))


def build_batch(dataset, batch_size, epoch_num):

center_word_batch = []
target_word_batch = []
label_batch = []
eval_word_batch = []

for epoch in range(epoch_num):
for center_word, target_word, label in dataset:
center_word_batch.append([center_word])
target_word_batch.append([target_word])
label_batch.append([label])

if len(eval_word_batch) < 5:
eval_word_batch.append([random.randint(0, 99)])
elif len(eval_word_batch) < 10:
eval_word_batch.append([random.randint(0, vocab_size - 1)])

if len(center_word_batch) == batch_size:
yield np.array(center_word_batch).astype("int64"), np.array(
target_word_batch).astype("int64"), np.array(
label_batch).astype("float32"), np.array(
eval_word_batch).astype("int64")
center_word_batch = []
target_word_batch = []
label_batch = []
eval_word_batch = []

if len(center_word_batch) > 0:
yield np.array(center_word_batch).astype("int64"), np.array(
target_word_batch).astype("int64"), np.array(label_batch).astype(
"float32"), np.array(eval_word_batch).astype("int64")


class SkipGram(fluid.dygraph.Layer):
def __init__(self, name_scope, vocab_size, embedding_size, init_scale=0.1):
super(SkipGram, self).__init__(name_scope)
self.vocab_size = vocab_size
self.embedding_size = embedding_size

self.embedding = Embedding(
size=[self.vocab_size, self.embedding_size],
dtype='float32',
param_attr=fluid.ParamAttr(
name='embedding_para',
initializer=fluid.initializer.UniformInitializer(
low=-0.5 / self.embedding_size,
high=0.5 / self.embedding_size)))

self.embedding_out = Embedding(
size=[self.vocab_size, self.embedding_size],
dtype='float32',
param_attr=fluid.ParamAttr(
name='embedding_out_para',
initializer=fluid.initializer.UniformInitializer(
low=-0.5 / self.embedding_size,
high=0.5 / self.embedding_size)))

@declarative
def forward(self, center_words, target_words, label):
center_words_emb = self.embedding(center_words)
target_words_emb = self.embedding_out(target_words)

# center_words_emb = [batch_size, embedding_size]
# target_words_emb = [batch_size, embedding_size]
word_sim = fluid.layers.elementwise_mul(center_words_emb,
target_words_emb)
word_sim = fluid.layers.reduce_sum(word_sim, dim=-1)

pred = fluid.layers.sigmoid(word_sim)

loss = fluid.layers.sigmoid_cross_entropy_with_logits(word_sim, label)
loss = fluid.layers.reduce_mean(loss)

return pred, loss


batch_size = 512
epoch_num = 1
embedding_size = 200
learning_rate = 1e-3
total_steps = len(dataset) * epoch_num // batch_size


def train(to_static):
program_translator = ProgramTranslator()
program_translator.enable(to_static)

random.seed(0)
np.random.seed(0)

place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.dygraph.guard(place):
fluid.default_startup_program().random_seed = 1000
fluid.default_main_program().random_seed = 1000

skip_gram_model = SkipGram("skip_gram_model", vocab_size,
embedding_size)
adam = fluid.optimizer.AdamOptimizer(
learning_rate=learning_rate,
parameter_list=skip_gram_model.parameters())

step = 0
ret = []
for center_words, target_words, label, eval_words in build_batch(
dataset, batch_size, epoch_num):
center_words_var = fluid.dygraph.to_variable(center_words)
target_words_var = fluid.dygraph.to_variable(target_words)
label_var = fluid.dygraph.to_variable(label)
pred, loss = skip_gram_model(center_words_var, target_words_var,
label_var)

loss.backward()
adam.minimize(loss)
skip_gram_model.clear_gradients()

step += 1
mean_loss = np.mean(loss.numpy())
print("step %d / %d, loss %f" % (step, total_steps, mean_loss))
ret.append(mean_loss)
return np.array(ret)


class TestWord2Vec(unittest.TestCase):
def test_dygraph_static_same_loss(self):
dygraph_loss = train(to_static=False)
static_loss = train(to_static=True)
self.assertTrue(
np.allclose(dygraph_loss, static_loss),
msg="dygraph_loss: {} \nstatic_loss: {}".format(dygraph_loss,
static_loss))


if __name__ == '__main__':
unittest.main()