Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions examples/multimodal/stable_diffusion/cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

PROJECT(main C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)

option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
set(THIRD_LIBS "")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

include_directories(${FASTDEPLOY_INCS})

file(GLOB_RECURSE ALL_SRCS ${PROJECT_SOURCE_DIR}/*.cc)

add_executable(main ${ALL_SRCS})
target_link_libraries(main ${FASTDEPLOY_LIBS} ${THIRD_LIBS})

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "./scheduler.h"
#include "fastdeploy/core/fd_tensor.h"

namespace fastdeploy {

class DPMSolverMultistepScheduler : public Scheduler {
public:
DPMSolverMultistepScheduler(int num_train_timesteps = 1000,
float beta_start = 0.0001, float beta_end = 0.02,
const std::string& beta_schedule = "linear",
const std::vector<float>& trained_betas = {},
int solver_order = 2, bool predict_epsilon = true,
bool thresholding = false,
float dynamic_thresholding_ratio = 0.995,
float sample_max_value = 1.0,
const std::string& algorithm_type = "dpmsolver++",
const std::string& solver_type = "midpoint",
bool lower_order_final = true);
void BetaForAlphaBar(FDTensor* out, int num_diffusion_timesteps,
float max_beta = 0.999);
void ConvertModelOutput(const FDTensor& model_output, int timestep,
const FDTensor& sample, FDTensor* out);
void DPMSolverFirstOrderUpdate(const FDTensor& model_output, int timestep,
int prev_timestep, const FDTensor& sample,
FDTensor* out);
void MultiStepDPMSolverSecondOrderUpdate(
const std::vector<FDTensor>& model_output_list,
const std::vector<int>& timestep_list, int prev_timestep,
const FDTensor& sample, FDTensor* out);
void MultiStepDPMSolverThirdOrderUpdate(
const std::vector<FDTensor>& model_output_list,
const std::vector<int>& timestep_list, int prev_timestep,
const FDTensor& sample, FDTensor* out);
void SetTimesteps(int num_inference_steps) override;
void Step(const FDTensor& model_output, int timestep, const FDTensor& sample,
FDTensor* prev_sample) override;
void ScaleModelInput(const FDTensor& sample, FDTensor* out,
const std::vector<FDTensor>& timesteps = {}) override;
void AddNoise(const FDTensor& original_samples, const FDTensor& noise,
const FDTensor& timesteps, FDTensor* out) override;
struct Config {
int num_train_timesteps_;
float beta_start_;
float beta_end_;
std::string beta_schedule_;
int solver_order_;
bool predict_epsilon_;
bool thresholding_;
float dynamic_thresholding_ratio_;
float sample_max_value_;
std::string algorithm_type_;
std::string solver_type_;
bool lower_order_final_;
} config;

private:
FDTensor betas_;
FDTensor alphas_;
FDTensor alphas_cumprod_;
FDTensor alpha_t_;
FDTensor sigma_t_;
FDTensor lambda_t_;
int num_inference_steps_;
FDTensor timesteps_;
int lower_order_nums_;
std::vector<FDTensor> model_outputs_;
};

} // namespace fastdeploy
35 changes: 35 additions & 0 deletions examples/multimodal/stable_diffusion/cpp/main.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "dpm_solver_multistep_scheduler.h"
#include <iostream>

int main() {
fastdeploy::DPMSolverMultistepScheduler dpm(
/* num_train_timesteps */ 1000,
/* beta_start = */ 0.00085,
/* beta_end = */ 0.012,
/* beta_schedule = */ "scaled_linear",
/* trained_betas = */ {},
/* solver_order = */ 2,
/* predict_epsilon = */ true,
/* thresholding = */ false,
/* dynamic_thresholding_ratio = */ 0.995,
/* sample_max_value = */ 1.0,
/* algorithm_type = */ "dpmsolver++",
/* solver_type = */ "midpoint",
/* lower_order_final = */ true);

return 0;
}
31 changes: 31 additions & 0 deletions examples/multimodal/stable_diffusion/cpp/scheduler.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "fastdeploy/core/fd_tensor.h"

namespace fastdeploy {

class Scheduler {
virtual void SetTimesteps(int num_inference_steps) = 0;
virtual void Step(const FDTensor& model_output, int timestep,
const FDTensor& sample, FDTensor* prev_sample) = 0;
virtual void ScaleModelInput(const FDTensor& sample, FDTensor* out,
const std::vector<FDTensor>& timesteps = {}) = 0;
virtual void AddNoise(const FDTensor& original_samples, const FDTensor& noise,
const FDTensor& timesteps, FDTensor* out) = 0;
};

} // namespace fastdeploy
4 changes: 1 addition & 3 deletions fastdeploy/core/fd_tensor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/core/fd_scalar.h"
#include "fastdeploy/core/float16.h"
#include "fastdeploy/utils/utils.h"

Expand Down Expand Up @@ -81,8 +80,7 @@ const void* FDTensor::CpuData() const {

void FDTensor::SetExternalData(const std::vector<int64_t>& new_shape,
const FDDataType& data_type, void* data_buffer,
const Device& new_device,
int new_device_id) {
const Device& new_device, int new_device_id) {
dtype = data_type;
shape.assign(new_shape.begin(), new_shape.end());
external_data_ptr = data_buffer;
Expand Down
3 changes: 1 addition & 2 deletions fastdeploy/core/fd_tensor.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,11 @@
#include <vector>

#include "fastdeploy/core/allocate.h"
#include "fastdeploy/core/fd_scalar.h"
#include "fastdeploy/core/fd_type.h"

namespace fastdeploy {

struct Scalar;

struct FASTDEPLOY_DECL FDTensor {
// std::vector<int8_t> data;
void* buffer_ = nullptr;
Expand Down
7 changes: 4 additions & 3 deletions fastdeploy/function/clip.cc
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,15 @@ void ClipKernel(const FDTensor& x, double min, double max, FDTensor* out) {
"max should be greater than or equal to min. But received min = %f, "
"max = %f",
static_cast<float>(min_), static_cast<float>(max_));

out->Allocate(x.Shape(), x.Dtype());
FDTensor tmp;
tmp.Allocate(x.Shape(), x.Dtype());
const T* x_data = reinterpret_cast<const T*>(x.Data());

int64_t numel = x.Numel();
T* out_data = reinterpret_cast<T*>(out->Data());
T* out_data = reinterpret_cast<T*>(tmp.Data());

std::transform(x_data, x_data + numel, out_data, ClipFunctor<T>(min_, max_));
*out = std::move(tmp);
}

void Clip(const FDTensor& x, double min, double max, FDTensor* out) {
Expand Down
21 changes: 21 additions & 0 deletions fastdeploy/function/elementwise.cc
Original file line number Diff line number Diff line change
Expand Up @@ -86,4 +86,25 @@ FDTensor operator/(const FDTensor& x, const FDTensor& y) {
return out;
}

#define INSTANTIATE_OPERATOR(operation_type) \
template FDTensor operator operation_type(const FDTensor& x, bool y); \
template FDTensor operator operation_type(const FDTensor& x, uint8_t y); \
template FDTensor operator operation_type(const FDTensor& x, int16_t y); \
template FDTensor operator operation_type(const FDTensor& x, int y); \
template FDTensor operator operation_type(const FDTensor& x, int64_t y); \
template FDTensor operator operation_type(const FDTensor& x, float y); \
template FDTensor operator operation_type(const FDTensor& x, double y); \
template FDTensor operator operation_type(bool x, const FDTensor& y); \
template FDTensor operator operation_type(uint8_t x, const FDTensor& y); \
template FDTensor operator operation_type(int16_t x, const FDTensor& y); \
template FDTensor operator operation_type(int x, const FDTensor& y); \
template FDTensor operator operation_type(int64_t x, const FDTensor& y); \
template FDTensor operator operation_type(float x, const FDTensor& y); \
template FDTensor operator operation_type(double x, const FDTensor& y)

INSTANTIATE_OPERATOR(+);
INSTANTIATE_OPERATOR(-);
INSTANTIATE_OPERATOR(*);
INSTANTIATE_OPERATOR(/);

} // namespace fastdeploy
34 changes: 34 additions & 0 deletions fastdeploy/function/elementwise.h
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,11 @@

#pragma once

#include "fastdeploy/core/fd_scalar.h"
#include "fastdeploy/core/fd_tensor.h"

namespace fastdeploy {

namespace function {

/** Excute the add operation for input FDTensors. *out = x + y.
Expand Down Expand Up @@ -62,10 +64,42 @@ FASTDEPLOY_DECL void Maximum(const FDTensor& x, const FDTensor& y,

FASTDEPLOY_DECL FDTensor operator+(const FDTensor& x, const FDTensor& y);

template <typename T> FDTensor operator+(const FDTensor& x, T y) {
return x + FDTensor(Scalar(y));
}

template <typename T> FDTensor operator+(T x, const FDTensor& y) {
return FDTensor(Scalar(x)) + y;
}

FASTDEPLOY_DECL FDTensor operator-(const FDTensor& x, const FDTensor& y);

template <typename T> FDTensor operator-(const FDTensor& x, T y) {
return x - FDTensor(Scalar(y));
}

template <typename T> FDTensor operator-(T x, const FDTensor& y) {
return FDTensor(Scalar(x)) - y;
}

FASTDEPLOY_DECL FDTensor operator*(const FDTensor& x, const FDTensor& y);

template <typename T> FDTensor operator*(const FDTensor& x, T y) {
return x * FDTensor(Scalar(y));
}

template <typename T> FDTensor operator*(T x, const FDTensor& y) {
return FDTensor(Scalar(x)) * y;
}

FASTDEPLOY_DECL FDTensor operator/(const FDTensor& x, const FDTensor& y);

template <typename T> FDTensor operator/(const FDTensor& x, T y) {
return x / FDTensor(Scalar(y));
}

template <typename T> FDTensor operator/(T x, const FDTensor& y) {
return FDTensor(Scalar(x)) / y;
}

} // namespace fastdeploy
8 changes: 5 additions & 3 deletions fastdeploy/function/elementwise_base.h
Original file line number Diff line number Diff line change
Expand Up @@ -213,10 +213,12 @@ void CommonElementwiseBroadcastForward(const FDTensor& x, const FDTensor& y,
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
y_dims_array.data(), out_dims_array.data(), max_dim,
axis);
z->Allocate(out_dims_array, TypeToDataType<OutType>::dtype);
FDTensor tmp;
tmp.Allocate(out_dims_array, TypeToDataType<OutType>::dtype);
CommonForwardBroadcastCPU<Functor, T, OutType>(
x, y, z, x_dims_array.data(), y_dims_array.data(), out_dims_array.data(),
max_dim, func, is_xsize_larger);
x, y, &tmp, x_dims_array.data(), y_dims_array.data(),
out_dims_array.data(), max_dim, func, is_xsize_larger);
*z = std::move(tmp);
}

template <typename Functor, typename T, typename OutType = T>
Expand Down
15 changes: 15 additions & 0 deletions fastdeploy/function/slice.cc
Original file line number Diff line number Diff line change
Expand Up @@ -163,5 +163,20 @@ void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
}));
}

void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
const std::vector<int64_t>& index, FDTensor* out) {
std::vector<int64_t> ends = index;
for (int i = 0; i < ends.size(); ++i) {
ends[i] += 1;
}
Slice(x, axes, index, ends, out);
for (int i = 0; i < axes.size(); ++i) {
if (out->Shape().size() <= 1) {
break;
}
out->Squeeze(axes[i]);
}
}

} // namespace function
} // namespace fastdeploy
3 changes: 3 additions & 0 deletions fastdeploy/function/slice.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,5 +37,8 @@ FASTDEPLOY_DECL void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
const std::vector<int64_t>& starts,
const std::vector<int64_t>& ends, FDTensor* out);

FASTDEPLOY_DECL void Slice(const FDTensor& x, const std::vector<int64_t>& axes,
const std::vector<int64_t>& index, FDTensor* out);

} // namespace function
} // namespace fastdeploy
18 changes: 18 additions & 0 deletions tests/function/test_elementwise.cc
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,15 @@ TEST(fastdeploy, check_same_dim) {
check_shape(z.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(z.Data()), maximum_result.data(),
maximum_result.size());

x = 1.0f - x;
sub_result = {0.157138, 0.353809, 0.862595, 0.885693, 0.340074, 0.464184,
0.257084, 0.154395, 0.787718, 0.700299, 0.137829, 0.591059,
0.873153, 0.843381, 0.571159, 0.152347, 0.754137, 0.330954,
0.121117, 0.323741, 0.333547, 0.67477, 0.586061, 0.165859};
check_shape(x.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(x.Data()), sub_result.data(),
sub_result.size());
}

TEST(fastdeploy, check_broadcast_dim1) {
Expand Down Expand Up @@ -498,6 +507,15 @@ TEST(fastdeploy, mixed_operation) {
check_shape(output.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(output.Data()), result.data(),
result.size());

result = {2.854443, 1.87709, 1.585621, 1.012709, 0.332781, 0.998346,
0.228024, 2.140475, 0.246941, 0.301517, 1.575438, 0.595582,
-0.410393, -0.163718, -0.405571, 0.58563, -0.177035, 0.263035,
0.075725, 0.591098, 0.156365, -0.106078, -0.475957, 0.626429};
output = a + b * c / d - e;
check_shape(output.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(output.Data()), result.data(),
result.size());
}

} // namespace function
Expand Down